Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 62 Current »

This page provides all the information related to Design Module 1 - VCU TRD Muti Stream design.

Table of Contents

1 Overview

The primary goal of this Design is to demonstrate the capabilities of VCU hard block present in Zynq UltraScale+ EV devices. The TRD will serve as a platform to tune the performance parameters of VCU and arrive at optimal configurations for encoder and decoder blocks. 

This design supports the following video interfaces:

Sources:

  • Test pattern generator (TPG) implemented in the PL

  • HDMI-Rx capture pipeline implemented in the PL

  • MIPI CSI-2 Rx capture pipeline implemented in the PL

  • File source (SD card, USB storage, SATA hard disk)

  • Stream-In from network or internet

Sinks:

  • DP-Tx display pipeline in the PS

  • HDMI-Tx display pipeline implemented in the PL

VCU Codec:

  • Video Encode/Decode capability using VCU hard block in PL

    • AVC/HEVC encoding

    • Encoder/decoder parameter configuration.

    • Demonstrate the multi-stream capability of VCU at 4K 60 Hz throughput

Streaming Interfaces:

  • 1G Ethernet PS GEM 

Video format:

  • NV12


This design demonstrates the multi-stream capability of VCU at 4K 60 Hz throughput.

  • Supports 2-4Kp30 multi-stream feature with any 2 of HDMI-Rx, TPG, and MIPI as the input source and HDMI-Tx as display pipeline.

  • Supports 4-1080p60 multi-stream feature with 3 HDMI-Rx and 1 MIPI as the input source and HDMI-Tx as display pipeline.

  • Supports 8-1080p30 multi-stream feature with 7 HDMI-Rx and 1 MIPI as the input source and HDMI-Tx as display pipeline.

Other features:

  • This design supports 8 channel memory-based SCD(Scene Change Detection) IP. SCD can be enabled or disabled through configuration.

Supported Resolution:

The table below provides the supported resolution from GUI and command-line app in this design.

Resolution

GUI

Command Line

Single Stream

Single Stream

Multi-stream

4Kp60

X

NA

4Kp30

√ (Max 2)

1080p60

√ (Max 4)

1080p30

X

√ (Max 8)

√- Supported
x - Not supported
NA - Not applicable

The below table gives information about the features supported in this design. 

Pipeline

Input Source

Output Type

Resolution

VCU Codec

PASSTHROUGH Pipeline: Capture → Display

HDMI-Rx / MIPI / TPG

HDMI-Tx / DP

4K / 1080p

None

Single Stream: Capture → SCD → Encode → Decode → Display

HDMI-Rx / MIPI / TPG

HDMI-Tx / DP

4K / 1080p

HEVC / AVC

Multi-Stream (2 input sources): Capture → SCD → Encode → Decode → Display

HDMI-Rx / MIPI / TPG

HDMI-Tx

4Kp30

HEVC / AVC

Multi-Stream(4 input sources): Capture → SCD → Encode → Decode → Display

HDMI-Rx / MIPI / TPG

HDMI-Tx

1080p60

HEVC / AVC

Multi-Stream(8 input sources): Capture → SCD → Encode → Decode → Display

7-HDMI-Rx + 1 MIPI

HDMI-Tx

1080p30

HEVC / AVC

Single Stream: Record/Stream-Out pipeline

HDMI-Rx / MIPI / TPG

File Sink / Stream-Out

4K / 1080p

HEVC / AVC

Multi-Stream(2 or 4 i/p sources): Record / Stream-Out pipeline

HDMI-Rx / MIPI / TPG

File Sink / Stream-Out

2-4Kp30 / 4-1080p60

HEVC / AVC

Multi-Stream(8 input sources): Record / Stream-Out pipeline

7-HDMI-Rx + 1 MIPI

File Sink / Stream-Out

8-1080p30

HEVC / AVC

File Playback / Streaming pipeline

File Source / Stream-In

HDMI-Tx / DP

4K / 1080p

HEVC / AVC

  • DP supports a max resolution of 4Kp30.

  • TPG will not support 1080p30 resolution mode.

The below figure shows the VCU TRD Multi Stream design hardware block diagram.

VCU TRD Design hardware block diagram

The below figure shows the VCU TRD Multi Stream design software block diagram.

1.1 Board Setup

Refer below link for Board Setup

1.2 Run Flow

The TRD package is released with the source code, Vivado project, Petalinux BSP, and SD card image that enables the user to run the demonstration. It also includes the binaries necessary to configure and boot the ZCU106 board. Prior to running the steps mentioned in this wiki page, download the TRD package and extract its contents to a directory referred to as TRD_HOME which is the home directory.

Refer below link to download all TRD contents.

TRD package contents are placed in the following directory structure. The user needs to copy all the files from the $TRD_HOME/images/vcu_trd/ to FAT32 formatted SD card directory.

rdf0428-zcu106-vcu-trd-2020.1
    ├── apu
    │   └── vcu_petalinux_bsp
    ├── images
    │   ├── vcu_10g
    │   ├── vcu_audio
    │   ├── vcu_hdmi_multistream_xv20
    │   ├── vcu_hdmi_rx
    │   ├── vcu_hdmi_tx
    │   ├── vcu_llp2_hdmi_nv12
    │   ├── vcu_llp2_hdmi_nv16
    │   ├── vcu_llp2_hdmi_xv20
    │   ├── vcu_llp2_sdi_xv20
    │   ├── vcu_multistream_nv12
    │   ├── vcu_pcie
    │   ├── vcu_sdirx
    │   ├── vcu_sditx
    │   └── vcu_sdi_xv20
    ├── pcie_host_package
    │   ├── COPYING
    │   ├── include
    │   ├── libxdma
    │   ├── LICENSE
    │   ├── readme.txt
    │   ├── RELEASE
    │   ├── tests
    │   ├── tools
    │   └── xdma
    ├── pl
    │   ├── constrs
    │   ├── designs
    │   ├── prebuild
    │   ├── README.md
    │   └── srcs
    └── README.txt

TRD package contents specific to VCU TRD Multi Stream design are placed in the following directory structure.

rdf0428-zcu106-vcu-trd-2020.1
├── apu
│   └── vcu_petalinux_bsp
│       └── xilinx-vcu-zcu106-v2020.1-final.bsp
├── images
│   ├── vcu_multistream_nv12
│   │   ├── autostart.sh
│   │   ├── bin
│   │   ├── BOOT.BIN
│   │   ├── boot.scr
│   │   ├── config
│   │   ├── image.ub
│   │   ├── system.dtb
│   │   └── vcu
├── pcie_host_package
├── pl
│   ├── constrs
│   ├── designs
│   │   ├── zcu106_trd
│   ├── prebuild
│   │   ├── zcu106_trd
│   ├── README.md
│   └── srcs
│       ├── hdl
│       └── ip
└── README.txt

The below snippet shows the configuration files (input.cfg) for running various multistream Display, Record, and Streaming use cases. All these configurations files are placed in the images folder mentioned above. The directory structure in /media/card.

config
├── 1-4kp60
│   ├── Display
│   ├── Record
│   ├── Stream-out
│   └── Stream-in
├── 2-4kp30
│   ├── Display
│   ├── Record
│   ├── Stream-out
│   └── Stream-in 
├── 4-1080p60
│   ├── Display
│   ├── Record
│   ├── Stream-out
│   └── Stream-in 
├── 8-1080p30 
│   ├── Display 
│   ├── Record
│   ├── Stream-out 
│   └── Stream-in 
└── input.cfg

1.2.1 GStreamer Application (vcu_gst_app)

The vcu_gst_app is a command-line multi-threaded Linux application. The command-line application requires an input configuration file (input.cfg) to be provided in the plain text.

Run below modetest command to set CRTC configurations for 4Kp60:

$ modetest -D a0070000.v_mix -s 44:3840x2160-60@BG24

Run below modetest command to set CRTC configurations for 4Kp30:

$ modetest -D a0070000.v_mix -s 44:3840x2160-30@BG24

Execution of the application is shown below:

$ vcu_gst_app <path to *.cfg file>

Example:

4kp60 HEVC_HIGH Display Pipeline Execution

$ vcu_gst_app /media/card/config/1-4kp60/Display/Single_4kp60_HEVC_HIGH.cfg

4kp60 HEVC_HIGH Record Pipeline Execution

$ vcu_gst_app /media/card/config/1-4kp60/Record/Single_4kp60_HEVC_HIGH.cfg

4kp60 HEVC_HIGH Stream-out Pipeline Execution

$ vcu_gst_app /media/card/config/1-4kp60/Stream-out/Single_4kp60_HEVC_HIGH.cfg

4kp60 HEVC_HIGH Stream-in Pipeline Execution

$ vcu_gst_app /media/card/config/1-4kp60/Stream-in/input.cfg

Make sure HDMI-Rx should be configured to 4kp60 mode

Latency Measurement: To measure the latency of the pipeline, run the below command. The latency data is huge, so dump it to a file.

$ GST_DEBUG="GST_TRACER:7" GST_TRACERS="latency" GST_DEBUG_FILE=/run/latency.log vcu_gst_app /media/card/config/input.cfg

Refer below link for detailed run flow steps

1.3 Build Flow

Refer below link for detailed build flow steps


2 Other Information

2.1 Known Issues

  • Frame drop observed in TPG pipeline

    • Frequency: Always

    • Workaround: None

56 fps in 4Kp60/1080p60, and 28 fps in 4Kp30 resolution

2.2 Limitations

2.3 Optimum VCU Encoder parameters for use-cases:

Video streaming:

  • Video streaming use-case requires a very stable bitrate graph for all pictures

  • It is good to avoid periodic large Intra pictures during the encoding session

  • Low-latency rate control (hardware RC) is the preferred control-rate for video streaming; as it tries to maintain equal amount frame sizes for all pictures.

  • Good to avoid periodic Intra frames instead use low-delay-p (IPPPPP…)

  • VBR is not a preferred mode of streaming

Performance: AVC Encoder settings:

  • It is preferred to use 8 or higher slices for better AVC encoder performance

  • AVC standard does not support Tile mode processing, which results in the processing of MB rows sequentially for entropy coding.

Quality: Low bitrate AVC encoding:

  • Enable profile=high and use qp-mode=auto for low-bitrate encoding use-cases

  • The high profile enables 8x8 transform which results in better video quality at low bitrates


3 Appendix A - Input Configuration File (input.cfg)

The example configuration files are stored at /media/card/config/ folder.

Common Configuration:
It is the starting point of common configuration.

Num of Input:
Provide the number of inputs. It is ranging from 1 to 8

Output:
Select the video interface
Options: HDMI or DP

Out Type:
Options: display, record, and stream

Display Rate:
Pipeline frame rate
Options: 30 FPS or 60 FPS for each stream

Exit:
It indicates to the application that the configuration is over.

Input Configuration:
It is the starting point of the input configuration.

Input Num:
Starting Nth input configuration
Options: 1-8

Input Type:
Input source type
Options: TPG, HDMI, HDMI_2, HDMI_3, HDMI_4, HDMI_5, HDMI_6, HDMI_7, MIPI, File, Stream

Uri:
File path or Network URL. Applicable for file playback and stream-in pipeline only. Supported file formats for playback are ts, mp4, and mkv.
Options: file:///run/media/sda/abc.ts (for file path), udp://192.168.25.89:5004/ (for Network streaming, Here 192.168.25.89 is Client's IP address and 5004 is port number)

See Mount Location for additional file paths

Raw:
To tell the pipeline is processed or pass-through
Options: True, False

Width:
The width of the live source
Options: 3840, 1920

Height:
The height of the live source
Options: 2160, 1080

Format:
The format of input data
Options: NV12

Enable SCD:
Enable or Disable Memory based SCD in the pipeline
Options: True, False

Exit:
It indicates to the application that the configuration is over.

Encoder Configuration:
It is the starting point of encoder configuration.

Encoder Num:
Starting Nth encoder configuration
Options: 1-8

Encoder Name:
Name of the encoder
Options: AVC, HEVC

Profile:
Name of the profile
Options: baseline, main or high for AVC. Main for HEVC.

Rate Control:
Rate control options
Options: CBR, VBR, and low-latency

Filler Data:
Filler Data NAL units for CBR rate control
Options: True, False

QP:
QP control mode used by the VCU encoder
Options: Uniform, Auto

L2 Cache:
Enable or Disable L2Cache buffer in encoding process
Options: True, False

Latency Mode:
Encoder latency mode
Options: Normal, sub_frame

Low Bandwidth:
If enabled, decrease the vertical search range used for P-frame motion estimation to reduce the bandwidth
Options: True, False

Gop Mode:
Group of Pictures mode
Options: Basic, low_delay_p, low_delay_b

Bitrate:
Target bitrate in Kbps
Options: 1-60000

B Frames:
Number of B-frames between two consecutive P-frames
Options: 0-4

Slice:
The number of slices produced for each frame. Each slice contains one or more complete macroblock/CTU row(s). Slices are distributed over the frame as regularly as possible. If slice-size is defined as well more slices may be produced to fit the slice-size requirement.
Options:
4-22 4Kp resolution with HEVC codec
4-32 4Kp resolution with AVC codec
4-32 1080p resolution with HEVC codec
4-32 1080p resolution with AVC codec

GoP Length:
The distance between two consecutive I frames
Options: 1-1000

GDR Mode:
It specifies which Gradual Decoder Refresh(GDR) scheme should be used when gop-mode = low_delay_p
Options: Horizontal, Vertical, Disabled

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only

Entropy Mode:
It specifies the entropy mode for H.264 (AVC) encoding process
Options: CAVLC, CABAC, Default

Max Picture Size:
It is used to curtail instantaneous peak in the bit-stream. When it is enabled, max-picture-size value is calculated and set with 10% of AllowedPeakMargin.
i.e. max-picture-size = (TargetBitrate / FrameRate) * 1.1
Options: TRUE, FALSE

It works in CBR/VBR rate-control only

Format:
The format of input data
Options: NV12

Preset:
Options: HEVC_HIGH, HEVC_MEDIUM, HEVC_LOW, AVC_HIGH, AVC_MEDIUM, AVC_LOW, Custom

Exit
It indicates to the application that the configuration is over.

Record Configuration:
It is the starting point of record configuration.

Record Num:
Starting Nth record configuration
Options: 1-8

Out-File Name:
Record file path
e.g. /run/media/sda/abc.ts

See Mount Location for additional file paths

Duration:
Duration in minutes
Options: 1-3

Exit
It indicates to the application that the configuration is over.

Streaming Configuration:
It is the starting point of streaming configuration.

Streaming Num:
Starting Nth Streaming configuration
Options: 1-8

Host IP:
The host to send the packets to the client
Options: 192.168.25.89 or Windows PC IP

Port:
The port to send the packets to
Options: 5004, 5008, 5012, 5016, 5020, 5024, 5028, and 5032

Exit
It indicates to the application that the configuration is over.

Trace Configuration:
It is the starting point of trace configuration.

FPS Info:
To display achieved frame per second information on the console
Options: True, False

APM Info:
To display APM counter number on the console
Options: True, False

Pipeline Info:
To display pipeline info on console
Options: True, False

Exit
It indicates to the application that the configuration is over.

Mount Locations

The mount locations for various devices can be found in the below table.
The mount locations can vary.  Users can use lsblk or mount to find the location of the mounted devices.

Below are some example mount points

Device

Mount Location

SD Card

/run/media/mmcblk0p2

Sata Drive
USB Drive

/run/media/sda
/run/media/usb

RAM Disk

/run/media/


4 Appendix B - HDMI-Rx/Tx Link-up and GStreamer Commands

This section covers configuration of HDMI-Rx using media-ctl utility and HDMI-Tx using modetest utility, along with demonstrating HDMI-Rx/Tx link-up issues and steps to switch HDMI-Rx resolution. It also contains sample GStreamer HDMI Video pipelines for Display, Record & Playback, Stream-in and Stream-out use-cases.

  • Kill the Qt GUI application running on target board by executing the below commands from the serial console

$ killall -9 run_vcu.sh
$ killall -9 vcu_qt
$ killall -9 Xorg
  • HDMI source can be locked to any resolution. Run the below command for all media nodes to print media device topology where "mediaX" represents different media nodes. In the topology, log look for the “v_hdmi_rx_ss” string to identify the HDMI input source media node.

$ media-ctl -p -d /dev/mediaX
  • To check the link status, resolution and video node of the HDMI input source, run below media-ctl command where "mediaX" indicates media node for the HDMI input source.

$ media-ctl -p -d /dev/mediaX
  • When HDMI source is connected to 4Kp60 resolution, it shows as below:

root@zcu106_vcu_trd:/media/card# media-ctl -p -d /dev/mediaX
Media controller API version 5.4.0

Media device information
------------------------
driver          xilinx-video
model           Xilinx Video Composite Device
serial          
bus info        
hw revision     0x0
driver version  5.4.0

Device topology
- entity 1: vcap_hdmi output 0 (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video0 -----> Video node for HDMI-Rx source
	pad0: Sink
		<- "a0080000.v_proc_ss":1 [ENABLED]

- entity 5: a0080000.v_proc_ss (2 pads, 2 links)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev21
	pad0: Sink
		[fmt:RBG888_1X24/3840x2160 field:none]
		<- "a0000000.v_hdmi_rx_ss":0 [ENABLED]
	pad1: Source
		[fmt:VYYUYY8_1X24/3840x2160 field:none]
		-> "vcap_hdmi output 0":0 [ENABLED]

- entity 8: a0000000.v_hdmi_rx_ss (1 pad, 1 link)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev22
	pad0: Source
		[fmt:RBG888_1X24/3840x2160 field:none colorspace:srgb]
		[dv.caps:BT.656/1120 min:0x0@25000000 max:4096x2160@297000000 stds:CEA-861,DMT,CVT,GTF caps:progressive,reduced-blanking,custom]
		[dv.detect:BT.656/1120 3840x2160p60 (4400x2250) stds:CEA-861 flags:CE-video] -----> Resolution and Frame-rate of HDMI-Rx source
		-> "a0080000.v_proc_ss":0 [ENABLED]

Check resolution and frame-rate of "dv.detect" under "v_hdmi_rx_ss" node

  • When the HDMI source is not connected, it shows as below:

root@zcu106_vcu_trd:/media/card# media-ctl -p -d /dev/mediaX
Media controller API version 5.4.0

Media device information
------------------------
driver          xilinx-video
model           Xilinx Video Composite Device
serial          
bus info        
hw revision     0x0
driver version  5.4.0

Device topology
- entity 1: vcap_hdmi output 0 (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video0 -----> Video node for HDMI-Rx source
	pad0: Sink
		<- "a0080000.v_proc_ss":1 [ENABLED]

- entity 5: a0080000.v_proc_ss (2 pads, 2 links)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev21
	pad0: Sink
		[fmt:RBG888_1X24/3840x2160 field:none]
		<- "a0000000.v_hdmi_rx_ss":0 [ENABLED]
	pad1: Source
		[fmt:VYYUYY8_1X24/3840x2160 field:none]
		-> "vcap_hdmi output 0":0 [ENABLED]

- entity 8: a0000000.v_hdmi_rx_ss (1 pad, 1 link)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev22
	pad0: Source
		[fmt:RBG888_1X24/3840x2160 field:none colorspace:srgb]
		[dv.caps:BT.656/1120 min:0x0@25000000 max:4096x2160@297000000 stds:CEA-861,DMT,CVT,GTF caps:progressive,reduced-blanking,custom]
		[dv.query:no-link] -----> HDMI-Rx Link Status
		-> "a0080000.v_proc_ss":0 [ENABLED]

Here "dv.query:no-link" under "v_hdmi_rx_ss" node shows HDMI-Rx source is not connected or HDMI-Rx source is not active (Try waking up the device by pressing a key on remote).

Notes for gst-launch-1.0 commands:

  • Video node for HDMI-Rx source can be checked using media-ctl command. Run below media-ctl command to check video node for HDMI-Rx source where "mediaX" indicates media node for HDMI input source.

$ media-ctl -p -d /dev/mediaX
  • Make sure HDMI-Rx media pipeline is configured for 4Kp60 resolution and source/sink have the same color format. Run below media-ctl commands to set resolution and format of HDMI scaler node where "mediaX" indicates media node for HDMI input source.

  • When HDMI Input Source is NVIDIA SHIELD

$ media-ctl -d /dev/mediaX -V "\"a0080000.v_proc_ss\":0  [fmt:RBG888_1X24/3840x2160 field:none]"
$ media-ctl -d /dev/mediaX -V "\"a0080000.v_proc_ss\":1  [fmt:VYYUYY8_1X24/3840x2160 field:none]"

Make sure NVIDIA SHIELD is configured for 4K resolution and RGB888 color format

  • When HDMI Input Source is ABOX

$ media-ctl -d /dev/mediaX -V "\"a0080000.v_proc_ss\":0  [fmt:VYYUYY8_1X24/3840x2160 field:none]"
$ media-ctl -d /dev/mediaX -V "\"a0080000.v_proc_ss\":1  [fmt:VYYUYY8_1X24/3840x2160 field:none]"

Make sure ABOX is configured for 4K resolution and VYYUYY8 color format

No need to set the format of SCD media node from 2020.1 onward:

  • SCD media node resolution is auto handled as per current pipeline resolution

  • After executing pipeline in case of any error, you can make sure if resolution was auto set as per resolution of pipeline for number of required streams or not using below command:
    (here mediaX is SCD media node)

$ media-ctl -p -d /dev/mediaX
  • Follow the below steps to switch the HDMI-Rx resolution from 1080p60 to 4Kp60

    • Check current HDMI input source resolution (1080p60) by following the steps mentioned earlier to check HDMI resolution using media-ctl command

    • Set config file for HDMI-1080p60

Below configurations needs to be set in input.cfg for HDMI-1080p60

Common Configuration    : START
Num Of Input            : 1
Output                  : HDMI
Out Type                : Display
Frame Rate              : 60
Exit

Input Configuration     : START
Input Num               : 1
Input Type              : hdmi
Raw                     : TRUE
Width                   : 1920
Height                  : 1080
Exit
  • Run vcu_gst_app for current HDMI resolution (1080p60) by executing the following command

$ vcu_gst_app /media/card/config/input.cfg
  • Change Resolution of HDMI Input Source from 1080p60 to 4Kp60 by following below steps.

    • Set the HDMI input source resolution to 4Kp60 (Homepage → settings → display & Sound → Resolution → change to 4kp60)

    • Save the configuration to take place the change

  • Verify the desired HDMI Input Source Resolution (4Kp60) by following the above-mentioned steps

If HDMI-Tx link-up issue is observed after Linux booting, use the following command:

$ modetest -D a0070000.v_mix -s 44:3840x2160-60@BG24
  • Display RAW use case: Run the following gst-launch-1.0 command to display passthrough pipeline. Where "videoX" indicates a video node for the input source.

$ gst-launch-1.0 v4l2src device=/dev/videoX io-mode=4 ! video/x-raw, width=3840, height=2160, format=NV12, framerate=60/1 ! queue ! kmssink bus-id="a0070000.v_mix"
  • Display serial use case: Run the following gst-launch-1.0 command to display processed pipeline (capture → scd → encode → decode → display) on HDMI-Tx. Where "videoX" indicates a video node for the input source.

$ gst-launch-1.0 v4l2src device=/dev/videoX io-mode=4 ! video/x-raw, width=3840, height=2160, format=NV12, framerate=60/1 ! xilinxscd io-mode=5 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, profile=main, alignment=au ! queue ! omxh265dec internal-entropy-buffers=5 low-latency=0 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix"
  • Record use case: Run the following gst-launch-1.0 command to record video using GStreamer pipeline. Where "videoX" indicates a video node for the input source.

$ gst-launch-1.0 v4l2src device=/dev/videoX io-mode=4 num-buffers=3600 ! video/x-raw, format=NV12,width=3840,height=2160,framerate=60/1 ! xilinxscd io-mode=5 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! queue ! video/x-h265, profile=main, alignment=au ! mpegtsmux alignment=7 name=mux ! filesink location="/run/media/sda/test.ts"

File location should be SATA SSD(ext4 format) to avoid the read-write bandwidth issue

  • File Playback use case: Run the following gst-launch-1.0 command to play the recorded file on HDMI-Tx using the GStreamer pipeline.

$ gst-launch-1.0 uridecodebin uri="file:///run/media/sda/test.ts" ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix"

File location should be SATA SSD(ext4 format) to avoid the read-write bandwidth issue

  • Stream-out use case: Run the following gst-launch-1.0 command for cbr stream-out pipeline. Where "videoX" indicates a video node for the input source.

$ gst-launch-1.0 v4l2src device=/dev/videoX io-mode=4 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! xilinxscd io-mode=5 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265, profile=main, alignment=au ! queue ! mpegtsmux alignment=7 name=mux ! rtpmp2tpay ! udpsink host=192.168.25.89 port=5004

Here 192.168.25.89 is host/client IP address and 5004 is port number

  • Stream-in use case: Run the following gst-launch-1.0 command to display cbr stream-in on HDMI-Tx video using Gstreamer pipeline where 5004 is port number.

$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, clock-rate=90000" ! rtpjitterbuffer latency=1000 ! rtpmp2tdepay ! tsparse ! video/mpegts ! tsdemux name=demux ! queue ! h265parse ! video/x-h265, profile=main, alignment=au ! omxh265dec internal-entropy-buffers=5 low-latency=0 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix"
  • No labels