Zynq UltraScale+ MPSoC VCU TRD 2020.1 - 10G HDMI Video Capture and HDMI Display

This page provides all the information related to Design Module 4 - VCU TRD 10G HDMI Video Capture and Display design.

Table of Contents

1 Overview

The primary goal of this Design is to demonstrate the capabilities of VCU hard block present in Zynq UltraScale+ EV devices. The TRD will serve as a platform to tune the performance parameters of VCU and arrive at optimal configurations for encoder and decoder blocks with the streaming use case where bandwidth plays a vital role. 10G will give sufficient bandwidth for the streaming protocol to play video pipeline smoothly.

This design supports the following video interfaces:

Sources:

  • HDMI-Rx capture pipeline implemented in the PL

  • File source (SD card, USB storage, SATA hard disk)

  • Stream-In from network or internet

Sinks:

  • HDMI-Tx display pipeline implemented in the PL

VCU Codec:

  • Video Encode/Decode capability using VCU hard block in PL 

    • AVC/HEVC encoding

    • Encoder/decoder parameter configuration

Streaming Interfaces:

  • 10G Ethernet on PL 

  • 1G Ethernet on PS

Video format:

  • NV12

10G Deliverables:

Pipeline

Input Source

Output Type

Resolution

Video Codec Type

Deliverables

Record / Stream-Out pipeline

HDMI-Rx

File Sink / Stream-Out

4K /1080p

HEVC / AVC

HDMI-Rx Video encodes with VCU and stores it in a container format

Playback pipeline

File Source / Stream-In

HDMI-Tx

4K /1080p

HEVC / AVC

Playback of the local-file / stream-in with video decoded using VCU and display on  HDMI-Tx

Capture → Display

HDMI-Rx

HDMI-Tx

4K /1080p

HEVC / AVC

HDMI-Rx Video passes to HDMI-Tx without VCU

Capture → Encode → Decode → Display

HDMI-Rx

HDMI-Tx

4K /1080p

HEVC / AVC

HDMI-Rx raw video passes through  VCU elements encoder and decoder and finally displays on HDMI-Tx

Supported Resolution:

The table below provides the supported resolution in this design.

Resolution

Command Line

Single Stream

Multi-stream

4Kp60

NA

4Kp30

NA

1080p60

NA

√ - Supported
NA – Not applicable

The below sections describe the 10G HDMI Video Capture and HDMI Display design. It is VCU TRD design supporting 10G HDMI-Rx and HDMI-Tx. For the overview, software tools, system requirements and design files follow the link below:

The below figure shows the 10G HDMI Video Capture and HDMI Display design hardware block diagram.


The below figure shows the 10G HDMI Video Capture and HDMI Display design software block diagram.

1.1 Board Setup

Refer below link for Board Setup

       Board Connections: 

The figure shows the ZCU106 board connections for 10G HDMI-Rx and HDMI-Tx Streaming support

1.2 Run Flow

The TRD package is released with the source code, Vivado project, Petalinux BSP, and SD card image that enables the user to run the demonstration. It also includes the binaries necessary to configure and boot the ZCU106 board. Prior to running the steps mentioned in this wiki page, download the TRD package and extract its contents to a directory referred to as TRD_HOME which is the home directory.

Refer below link to download all TRD contents.

TRD package contents are placed in the following directory structure. The user needs to copy all the files from the $TRD_HOME/images/vcu_10g/ to FAT32 formatted SD card directory.

rdf0428-zcu106-vcu-trd-2020-1 ├── apu │ └── vcu_petalinux_bsp ├── images │ ├── vcu_10g │ ├── vcu_audio │ ├── vcu_hdmi_multistream_xv20 │ ├── vcu_hdmi_rx │ ├── vcu_hdmi_tx │ ├── vcu_llp2_hdmi_nv12 │ ├── vcu_llp2_hdmi_nv16 │ ├── vcu_llp2_hdmi_xv20 │ ├── vcu_llp2_sdi_xv20 │ ├── vcu_multistream_nv12 │ ├── vcu_pcie │ ├── vcu_sdirx │ ├── vcu_sditx │ └── vcu_sdi_xv20 ├── pcie_host_package │ ├── COPYING │ ├── include │ ├── libxdma │ ├── LICENSE │ ├── readme.txt │ ├── RELEASE │ ├── tests │ ├── tools │ └── xdma ├── pl │ ├── constrs │ ├── designs │ ├── prebuild │ ├── README.md │ └── srcs └── README.txt

TRD package contents specific to 10G HDMI Video Capture and HDMI Display design is placed in the following directory structure.

rdf0428-zcu106-vcu-trd-2020-1 ├── apu │ └── vcu_petalinux_bsp │ └── xilinx-vcu-zcu106-v2020.1-final.bsp ├── images │ ├── vcu_10g │ │ ├── autostart.sh │ │ ├── bin │ │ ├── BOOT.BIN │ │ ├── boot.scr │ │ ├── config │ │ ├── image.ub │ │ ├── system.dtb │ │ └── vcu ├── pcie_host_package ├── pl │ ├── constrs │ ├── designs │ │ ├── zcu106_10g │ ├── prebuild │ │ ├── zcu106_10g │ ├── README.md │ └── srcs │ ├── hdl │ └── ip └── README.txt

configuration files (input.cfg) for various Resolutions are placed in the following directory structure in /media/card.

config ├── 4kp60 │ ├── Display │ ├── Record │ ├── Stream-out │ └── Stream-in ├── 4kp30 │ ├── Display │ ├── Record │ ├── Stream-out │ └── Stream-in ├── 1080p60 │ ├── Display │ ├── Record │ ├── Stream-out │ └── Stream-in └── input.cfg

1.2.1 GStreamer Application (vcu_gst_app)

The vcu_gst_app is a command-line multi-threaded Linux application. The command-line application requires an input configuration file (input.cfg) to be provided in plain text.

Execution of the application is shown below:

Example:

4Kp60 HEVC_HIGH Display Pipeline execution

4Kp60 HEVC_HIGH Record Pipeline execution

4Kp60 HEVC_HIGH Stream-out Pipeline execution

4Kp60 HEVC_HIGH Stream-in Pipeline execution

Make sure HDMI-Rx should be configured to 4Kp60 mode

Latency Measurement: To measure the latency of the pipeline, run the below command. The latency data is huge, so dump it to a file.

Refer below link for detailed run flow steps

1.3 Build Flow

Refer below link for Build Flow


2 Other Information

2.1 Known Issues

2.2 Limitations

2.3 Optimum VCU Encoder parameters for use-cases:

Video streaming:

  • Video streaming use-case requires a very stable bitrate graph for all pictures

  • It is good to avoid periodic large Intra pictures during the encoding session

  • Low-latency rate control (hardware RC) is the preferred control-rate for video streaming, it tries to maintain equal amount frame sizes for all pictures.

  • Good to avoid periodic Intra frames instead use low-delay-p (IPPPPP…)

  • VBR is not a preferred mode of streaming

Performance: AVC Encoder settings:

  • It is preferred to use 8 or higher slices for better AVC encoder performance

  • AVC standard does not support Tile mode processing which results in the processing of MB rows sequentially for entropy coding

Quality: Low bitrate AVC encoding:

  • Enable profile=high and use qp-mode=auto for low-bitrate encoding use-cases

  • The high profile enables 8x8 transform which results in better video quality at low bitrates


3 Appendix A - Input Configuration File (input.cfg)

The example configuration files are stored at /media/card/config/ folder.

Common Configuration:
It is the starting point of common configuration.

Num of Input:
Provide the number of inputs. this is always 1 for this design.

Output:
Select the video interface
Options: HDMI or DP

Out Type:
Options: display, record, and stream

Display Rate:
Pipeline frame rate
Options: 30 FPS or 60 FPS for each stream

Exit:
It indicates to the application that the configuration is over.

Input Configuration:
It is the starting point of the input configuration.

Input Num:
Starting Nth input configuration
Options: 1

Input Type:
Input source type
Options: HDMI, File, Stream

Uri:
File path or Network URL. Applicable for file playback and stream-in pipeline only. Supported file formats for playback are ts, mp4, and mkv.

For 10G HDMI Options: file:///run/media/sda/abc.ts (for file path), udp://192.168.26.89:5004/ (for Network streaming, Here 192.168.26.89 is 10G IP address and 5004 is port number) 
For 1G HDMI Options: file:///run/media/sda/abc.ts (for file path), udp://192.168.25.89:5004/ (for Network streaming, Here 192.168.25.89 is the 1G IP address and 5004 is port number) 

Raw:
To tell the pipeline is processed or pass-through
Options: True, False

Width:
The width of the live source
Options: 3840, 1920

Height:
The height of the live source
Options: 2160, 1080

Exit:
It indicates to the application that the configuration is over.

Encoder Configuration:
It is the starting point of encoder configuration.

Encoder Num:
Starting Nth encoder configuration
Options: 1

Encoder Name:
Name of the encoder
Options: AVC, HEVC

Profile:
Name of the profile
Options: baseline, main or high for AVC. Main for HEVC.

Rate Control:
Rate control options
Options: CBR, VBR, and low-latency

Filler Data:
Filler Data NAL units for CBR rate control
Options: True, False

QP:
QP control mode used by the VCU encoder
Options: Uniform, Auto

L2 Cache:
Enable or Disable L2Cache buffer in encoding process
Options: True, False

Latency Mode:
Encoder latency mode.
Options: Normal, sub_frame

Low Bandwidth:
If enabled, decrease the vertical search range used for P-frame motion estimation to reduce the bandwidth
Options: True, False

Gop Mode:
Group of Pictures mode
Options: Basic, low_delay_p, low_delay_b

Bitrate:
Target bitrate in Kbps
Options: 1-60000

B Frames:
Number of B-frames between two consecutive P-frames
Options: 0-4

Slice:
The number of slices produced for each frame. Each slice contains one or more complete macroblock/CTU row(s). Slices are distributed over the frame as regularly as possible. If slice-size is defined as well more slices may be produced to fit the slice-size requirement.
Options:
4-22 4Kp resolution with HEVC codec
4-32 4Kp resolution with AVC codec
4-32 1080p resolution with HEVC codec
4-32 1080p resolution with AVC codec

GoP Length:
The distance between two consecutive I frames
Options: 1-1000

GDR Mode:
It specifies which Gradual Decoder Refresh(GDR) scheme should be used when gop-mode = low_delay_p
Options: Horizontal, Vertical, Disabled

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only

Entropy Mode:
It specifies the entropy mode for H.264 (AVC) encoding process
Options: CAVLC, CABAC, Default

Max Picture Size:
It is used to curtail instantaneous peak in the bit-stream. When it is enabled, max-picture-size value is calculated and set with 10% of AllowedPeakMargin.
i.e. max-picture-size = (TargetBitrate / FrameRate) * 1.1
Options: TRUE, FALSE

Format:
The format of input data
Options: NV12

Preset:
Options: HEVC_HIGH, HEVC_MEDIUM, HEVC_LOW, AVC_HIGH, AVC_MEDIUM, AVC_LOW, Custom

Exit
It indicates to the application that the configuration is over.

Record Configuration:
It is the starting point of record configuration.

Record Num:
Starting Nth record configuration
Options: 1

Out-File Name:
Record file path.
e.g. /run/media/sda/abc.ts

Duration:
Duration in minutes
Options: 1-3

Exit
It indicates to the application that the configuration is over.

Streaming Configuration:
It is the starting point of streaming configuration.

Streaming Num:
Starting Nth Streaming configuration
Options: 1

Host IP:
The host to send the packets to

Port:
The port to send the packets to
Options: 5004, 5008, 5012 and 5016

Exit
It indicates to the application that the configuration is over.

Trace Configuration:
It is the starting point of trace configuration.

FPS Info:
To display fps info on the console
Options: True, False

APM Info:
To display the APM counter number on the console
Options: True, False

Pipeline Info:
To display pipeline info on console
Options: True, False

Exit
It indicates to the application that the configuration is over.


4 Appendix B - HDMI-Rx/Tx Linkup and GStreamer Commands

This section covers configuration of HDMI-Rx using media-ctl utility and HDMI-Tx using modetest utility, along with demonstrating HDMI-Rx/Tx link-up issues and steps to switch HDMI-Rx resolution. It also contains sample GStreamer HDMI Video pipelines for Display, Record & Playback, Stream-in and Stream-out use-cases. Streaming use-cases are covered for both 1G and 10G support.

  • To check the link status, resolution and video node of HDMI input source, run below media-ctl command.

  • When HDMI source is connected to 4Kp60 resolution, it shows as below:

  • When the HDMI source is not connected, it shows as below:

Notes for gst-launch-1.0 commands:

  • Make sure the HDMI-Rx media pipeline is configured for 4Kp60 resolution and source/sink has the same color format. Run below media-ctl commands to set the resolution and format of the HDMI scaler node.

  • When HDMI Input Source is NVIDIA SHIELD

  • When HDMI Input Source is ABOX

  • Follow the below steps to switch the HDMI-Rx resolution from 1080p60 to 4Kp60.

    • Check current HDMI Input Source Resolution (1080p60) by following the above-mentioned steps.

    • Set config file for HDMI-1080p60

Below configurations needs to be set in input.cfg for HDMI-1080p60

  • Run vcu_gst_app for current HDMI resolution (1080p60) by executing the following command

  • Change Resolution of HDMI Input Source from 1080p60 to 4Kp60 by following the below steps

    • Set the HDMI source resolution to 4Kp60 (Home page → settings → display & Sound → Resolution → change to 4Kp60)

    • Save the configuration to take place the change

  • Verify the desired HDMI Input Source Resolution (4Kp60) by following the above-mentioned steps

If HDMI-Tx link-up issue is observed after Linux booting, use the following command:

  • Display RAW use case: Run the following gst-launch-1.0 command to display raw HDMI video using the GStreamer pipeline.

  • Serial use case: Run the following gst-launch-1.0 command to display processed (capture → encode → decode → display) HDMI video using the GStreamer pipeline.

  • Record use case: Run the following gst-launch-1.0 command to record HDMI video using the GStreamer pipeline.

  • File Playback use case: Run the following gst-launch-1.0 command to play the recorded file using the GStreamer pipeline.

  • Stream-out use case for 10G: Run the following gst-launch-1.0 command to stream-out HDMI video using the GStreamer pipeline.

  • Stream-in use case: Run the following gst-launch-1.0 command to display stream-in video using the Gstreamer pipeline where 5004 is port number.

© Copyright 2019 - 2022 Xilinx Inc. Privacy Policy