Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Xlnx-config is command line tool used to manage and manipulate the hardware platform for Xilinx ZCU102/4/6 and KV260 boards running Certified Ubuntu 20.04 LTS for Xilinx Devices. Xlnx-config provides three main functions as detailed below.

Info

A beta version is available that supports the VCK190 - Please add --beta to the install command to use this version.

Platform Management

The main purpose of the xlnx-config is to load custom hardware platforms (Targeted reference designs (TRDs), Vitis accelerated platforms, etc) for the Zynq UltraScale+ boards other than the standard standard platforms delivered as part of the Certified Ubuntu for Xilinx Devices Image.

For ZCU10x, xlnx-config manages the installing of the custom boot assets (bitstream, firmware, and xclbin) while maintaining the “golden” boot assets delivered with the Certified Ubuntu image. For detailed information about the ZCU10x boot process, please refer to Booting Certified Ubuntu 20.04 LTS for Xilinx Devices.

For the KV260, which does not include a bitstream in the official image, xlnx-config manages the installation of “Accelerated Application” (AA) firmware by integrating a subset of the “xmutil” set of sub-utilities.

...

When an configuration is activated, if the assets directory for the board contains a bootgen.bif file, new boot assets will be generated by xlnx-config by following these steps:

  1. Copy files from the assets directory to a temporary directory.

  2. Run bootgen using bootgen.bif as input. This file can reference not only the files coming from the assets directory, but also the default boot assets installed in the system like /usr/lib/u-boot/xilinx_zynqmp_virt/u-boot.elf or /usr/share/xlnx-firmware/zcu10*/*, so there is no need to include all binaries in the application package.

  3. Copy the resulting boot10?0.bin file to /boot/firmware/.  This file has precedence over the default boot assets named boot10?1.bin, so if present, they are loaded by the image selector.

  4. The manifest.yaml file for the configuration will be copied to /var/lib/xlnx-config. This way the snap will know if it has been activated and if that is the case, which configuration has been activated. 

  5. A file named active_board is created in the same directory that includes the active board name and the location of the activated assets directory.

  6. Once the activation is complete, the user must manually reboot the system in order for the new boot assets to take effect.

When a configuration is deactivated, the following steps will be taken:

  1. The /boot/firmware/boot10?0.bin file will be removed if present, and the user will be asked to reboot the system for the changes to take effect.

  2. The manifest.yaml and active_board files will be removed from /var/lib/xlnx-config.

Note that when a new configuration is activated, the steps to deactivate any previously activated configuration are applied as first step.

...

 When using the manual install method, the PAC archive must be copied/extracted into one of two places:

  1. /boot/firmware/xlnx-config/<pac name>

  2. /usr/local/share/xlnx-config/<pac name>

Info

/boot/firmware is the mount point for the FAT partition of the SD card

...