Zynq UltraScale+ MPSoC VCU TRD 2020.2 - PL DDR HDR10 HDMI Video Capture and Display

This page provides all the information related to Design Module 6 - VCU TRD PL DDR HDR10 HDMI design.

Table of Contents

1 Overview

This module supports the reception and insertion of HDR10 static metadata for HDMI. This HDR10 metadata that contains critical information needed to support HDR will be carried throughout the pipeline - from the source to the sink. It enables the capture of HDR10 video from an HDMI-Rx Subsystem implemented in the PL. The video can be displayed through HDR10 compatible HDMI-Tx through the PL and recorded in SD cards or USB/SATA drives. The module can Stream-in or Stream-out HDR10 encoded data through an Ethernet interface. This module supports single-stream for XV20 and XV15 format. It also supports DCI 4k (4096 x 2160) resolution at 60 FPS.

This is the new design approach proposed to use PL_DDR for decoding and PS_DDR for encoding so that DDR bandwidth would be enough to support high bandwidth VCU applications requiring simultaneous encoder and decoder operations and transcoding at 4k@60 FPS. This approach makes the most effective use of limited AXI4 read/write issuance capability in minimizing latency for the decoder. DMA buffer sharing requirements determine how capture, display, and intermediate processing stages should be mapped to the PS or PL DDR.

This design supports the following video interfaces:
Sources:

  • HDMI-Rx capture pipeline implemented in the PL.

  • File source (SD card, USB storage, SATA hard disk).

  • Stream-In from network or internet.

Sinks:

  • HDMI-Tx display pipeline implemented in the PL.

VCU Codec:

  • Video Encode/Decode capability using VCU hard block in PL 

    • AVC/HEVC encoding

    • Encoder/decoder parameter configuration.

Video format:

  • XV20, XV15

Supported Resolution:

The table below provides the supported resolution from the command line app only in this design.

Resolution

Command Line

Single Stream

Multi-stream

4kp60

NA

4kp30

x

1080p60

x

√ - Supported
x – Not supported
NA – Not applicable

The below table gives information about the features supported in this design. 

Pipeline

Input source

Format

Output Type

Resolution

VCU codec

Pipeline

Input source

Format

Output Type

Resolution

VCU codec

Serial pipeline

HDMI-Rx

XV20/ XV15

HDMI-Tx

DCI-4kp60/ 4kp60/ 4kp30/ 1080p60

HEVC/ AVC

Record/ Stream-Out pipeline

HDMI-Rx

XV20/ XV15

File Sink/ Stream-Out

DCI-4kp60/ 4kp60/ 4kp30/ 1080p60

HEVC/ AVC

File/ Streaming Playback pipeline

File Source/ Stream-In

XV20/ XV15

HDMI-Tx

DCI-4kp60/ 4kp60/ 4kp30/ 1080p60

HEVC/ AVC


The below figure shows the PL DDR HDR10 HDMI design hardware block diagram.

The below figure shows the PL DDR HDR10 HDMI design software block diagram.

1.1 Board Setup

Refer below link for Board Setup

1.2 Run Flow

The TRD package is released with the source code, Vivado project, Petalinux BSP, and SD card image that enables the user to run the demonstration. It also includes the binaries necessary to configure and boot the ZCU106 board. Prior to running the steps mentioned in this wiki page, download the TRD package and extract its contents to a directory referred to as TRD_HOME which is the home directory.

Refer below link to download all TRD contents.

TRD package contents are placed in the following directory structure. The user needs to copy all the files from the $TRD_HOME/images/vcu_trd/ to FAT32 formatted SD card directory.

rdf0428-zcu106-vcu-trd-2020.2 ├── apu │   └── vcu_petalinux_bsp ├── images │   ├── vcu_10g │   ├── vcu_audio │   ├── vcu_hdr10_hdmi │   ├── vcu_llp2_hdmi_nv12 │   ├── vcu_llp2_hdmi_nv16 │   ├── vcu_llp2_hdmi_xv20 │   ├── vcu_llp2_sdi_xv20 │   ├── vcu_multistream_nv12 │   ├── vcu_pcie │   ├── vcu_quad_sensor │   └── vcu_sdi_xv20 ├── pcie_host_package │   ├── COPYING │   ├── include │   ├── LICENSE │   ├── readme.txt │   ├── RELEASE │   ├── tests │   ├── tools │   └── xdma ├── pl │   ├── constrs │   ├── designs │   ├── prebuild │   ├── README.md │   └── srcs └── README.txt

TRD package contents specific to VCU HDR10 HDMI design are placed in the following directory structure.

rdf0428-zcu106-vcu-trd-2020.2 ├── apu │   └── vcu_petalinux_bsp │   └── xilinx-vcu-zcu106-v2020.2-final.bsp ├── images │   ├── vcu_hdr10_hdmi │   │   ├── autostart.sh │   │   ├── BOOT.BIN │   │   ├── boot.scr │   │   ├── config │   │   ├── image.ub │   │   ├── system.dtb │   │   └── vcu ├── pcie_host_package ├── pl │   ├── constrs │ ├── designs │   │   └── zcu106_HDR10_DCI4K │   ├── prebuild │   │   └── zcu106_HDR10_DCI4K │   ├── README.md │   └── srcs │   ├── hdl │   └── ip └── README.txt

The below snippet shows the configuration files (input.cfg) for running various resolutions for Display, Record, and Streaming use cases. All these configurations files are placed in the images folder mentioned above. The directory structure in /media/card.

config ├── 4kp60 │   ├── Display │   ├── Record │   ├── Stream-in │   └── Stream-out ├── 4kp30 │   ├── Display │   ├── Record │   ├── Stream-in │   └── Stream-out ├── 1080p60 │   ├── Display │   ├── Record │   ├── Stream-in │   └── Stream-out └── input.cfg

1.2.1 GStreamer Application (vcu_gst_app)

The vcu_gst_app is a command-line multi-threaded Linux application. The command-line application requires an input configuration file (input.cfg) to be provided in the plain text.

Run below modetest command to set CRTC configurations for 4Kp60:

Run below modetest command to set CRTC configurations for 4Kp30:

Execution of the application is shown below:

Examples:

4kp60 XV20 HEVC_HIGH HDR10 Display Pipeline execution

4kp60 XV20 HEVC_HIGH HDR10 Record Pipeline execution

4kp60 XV20 HEVC_HIGH HDR10 Stream-out Pipeline execution

4kp60 XV20 HEVC_HIGH HDR10 Stream-in Pipeline execution

Make sure HDMI-Rx should be configured to 4kp60 mode

To measure the latency of the pipeline, run the below command. The latency data is huge, so dump it to a file.

Refer below link for detailed run flow steps

1.3 Build Flow

Refer below link for detailed build flow steps


2 Other Information

2.1 Known Issues

2.2 Limitations

2.3 Optimum VCU Encoder parameters for use-cases.

Video streaming:

  • Video streaming use-case requires a very stable bitrate graph for all pictures.

  • It is good to avoid periodic large Intra pictures during the encoding session

  • Low-latency rate control (hardware RC) is the preferred control-rate for video streaming, it tries to maintain equal amount frame sizes for all pictures.

  • Good to avoid periodic Intra frames instead use low-delay-p (IPPPPP…)

  • VBR is not a preferred mode of streaming.

Performance: AVC Encoder settings:

  • It is preferred to use 8 or higher slices for better AVC encoder performance.

  • AVC standard does not support Tile mode processing which results in the processing of MB rows sequentially for entropy coding.

Quality: Low bitrate AVC encoding:

  • Enable profile=high and use qp-mode=auto for low-bitrate encoding use-cases

  • The high profile enables 8x8 transform which results in better video quality at low bitrates.


3 Appendix A - Input Configuration File (input.cfg)

The example configuration files are stored at /media/card/config/ folder.

Configuration Type

Configuration Name

Description

Available Options

Configuration Type

Configuration Name

Description

Available Options

Common

 

Common Configuration

It is the starting point of common configuration

 

Num of Input

Provide the number of inputs. Set to 1 as it supports only single stream

1

Output

Select the video interface

HDMI

Out Type

Type of output

display, record, stream

Display Rate

Pipeline frame rate

30 or 60 fps

Exit

It indicates to the application that the configuration is over

 

Input

Input Configuration

It is the starting point of the input configuration

 

Input Num

Starting Nth input configuration

1

Input Type

Input source type

HDMI, File, Stream

Uri

File path or Network URL. Applicable for file playback and stream-in pipeline only. Supported file formats for playback are ts, mp4, and mkv.

file:///run/media/sda/abc.ts (for file path), udp://192.168.25.89:5004/ (for Network streaming, Here 192.168.25.89 is Client's IP address and 5004 is port number)

Raw

To tell the pipeline is processed or pass-through

The raw use-case is not supported with this design as mixer is not connected to PS DDR

False

Width

The width of the live source

3840, 1920

Height

The height of the live source

2160, 1080

Format

The format of input data

XV20, XV15

Exit

It indicates to the application that the configuration is over

 

Encoder

 

Encoder Configuration

It is the starting point of encoder configuration

 

Encoder Num

Starting Nth encoder configuration

1

Encoder Name

Name of the encoder

AVC, HEVC

Profile

Name of the profile

AVC: High
HEVC: Main

Rate Control

Rate control options

CBR, VBR, and low-latency

Filler Data

Filler Data NAL units for CBR rate control

True, False

QP

QP control mode used by the VCU encoder

Uniform, Auto

L2 Cache

Enable or Disable L2Cache buffer in encoding process

True, False

Latency Mode

Encoder latency mode.

Normal, sub_frame

Low Bandwidth

If enabled, decrease the vertical search range used for P-frame motion estimation to reduce the bandwidth.

True, False

Gop Mode

Group of Pictures mode.

Basic, low_delay_p, low_delay_b

Bitrate

Target bitrate in Kbps

1-60000

B Frames

Number of B-frames between two consecutive P-frames

0-4

Slice

The number of slices produced for each frame. Each slice contains one or more complete macroblock/CTU row(s). Slices are distributed over the frame as regularly as possible. If slice-size is defined as well more slices may be produced to fit the slice-size requirement.

4-22 4Kp resolution with HEVC codec
4-32 4Kp resolution with AVC codec
4-32 1080p resolution with HEVC codec
4-32 1080p resolution with AVC codec

GoP Length

The distance between two consecutive I frames

1-1000

GDR Mode

It specifies which Gradual Decoder Refresh(GDR) scheme should be used when gop-mode = low_delay_p

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only

Horizontal, Vertical, Disabled

Entropy Mode

It specifies the entropy mode for H.264 (AVC) encoding process

CAVLC, CABAC, Default

Max Picture Size

It is used to curtail instantaneous peak in the bit-stream using this parameter. It works in CBR/VBR rate-control only. When it is enabled, max-picture-size value is calculated and set with 10% of AllowedPeakMargin. i.e. max-picture-size =  (TargetBitrate / FrameRate) * 1.1

True, False

Format

The format of input data

NV12

Preset

Based on provided six presets, predefined configuration will be set for encoder parameters. Select custom to provide user-specific options for encoder parameters.

HEVC_HIGH, HEVC_MEDIUM, HEVC_LOW, AVC_HIGH, AVC_MEDIUM, AVC_LOW, Custom

Exit

It indicates to the application that the configuration is over

 

Record

Record Configuration

It is the starting point of record configuration

 

Record Num

Starting Nth record configuration

1

Out-File Name

Record file path

e.g. /run/media/sda/abc.ts

Duration

Duration in minutes

1-3

Exit

It indicates to the application that the configuration is over

 

Streaming

Streaming Configuration

It is the starting point of streaming configuration.

 

Streaming Num

Starting Nth Streaming configuration

1

Host IP

The host to send the packets to the client

192.168.25.89 or Windows PC IP

Port

The port to send the packets to port number

5004

Exit

It indicates to the application that the configuration is over.

 

Trace

Trace Configuration

It is the starting point of trace configuration

 

FPS Info

To display achieved frame per second information on the console

True, False

APM Info

To display APM counter number on the console

True, False

Pipeline Info

To display pipeline info on console

True, False

Exit

It indicates to the application that the configuration is over

 


4 Appendix B - HDMI-Rx/Tx Link-up and GStreamer Commands

This section covers configuration of HDMI-Rx using media-ctl utility and HDMI-Tx using modetest utility, along with demonstrating HDMI-Rx/Tx link-up issues and steps to switch HDMI-Rx resolution. It also contains sample GStreamer HDMI video pipelines for Display, Record & Playback, Stream-in and Stream-out use-cases.

  • HDMI source can be locked to any resolution. Run the below command for all media nodes to print media device topology. where, mediaX represents different media nodes. In the topology, log look for the v_hdmi_rx_ss string to identify the HDMI input source media node.

  • To check the link status, resolution and video node of the HDMI input source, run below media-ctl command, where ,mediaX indicates media node for the HDMI input source.

  • When HDMI source is connected to 4Kp60 resolution, it shows:

  • When the HDMI source is not connected, it shows:

Notes for gst-launch-1.0 commands:

  • Video node for HDMI-Rx source can be checked using media-ctl command. Run below media-ctl command to check video node for HDMI-Rx source. where, media0 indicates media node for HDMI input source.

  • Make sure the HDMI-Rx media pipeline is configured for 4kp60 resolution and source/sink has the same color format for connected nodes. For XV20 format, run below media-ctl commands to set resolution and format of HDMI scaler node where media0 indicates media node for HDMI input source.

When HDMI Input Source is NVIDIA SHIELD

  • Follow the below steps to switch the HDMI-Rx resolution from 1080p60 to 4kp60.

    • Check current HDMI Input Source Resolution (1080p60) by following the steps mentioned earlier to check HDMI-Rx resolution using media-ctl command.

    • Run vcu_gst_app for current HDMI-Rx resolution (1080p60) by executing the following command.

Below configurations needs to be set in input.cfg for HDMI-Rx 1080p60 resolution.

  • Change Resolution of HDMI Input Source from 1080p60 to 4kp60 by following the below steps.

    • Set the HDMI source resolution to 4kp60 (Homepage → Settings → Display & Sound → Resolution → change to 4kp60).

    • Save the configuration to take place the change.

    • Verify the desired HDMI Input Source Resolution (4kp60) by following the above-mentioned steps.

  • If the HDMI-Tx link-up issue is observed after Linux booting, use the following command to get the blue screen on HDMI-Tx for 4kp60:

  • If the HDMI-Tx link-up issue is observed after Linux booting, use the following command to get the blue screen on HDMI-Tx for 4kp30:

  • The table below lists the parameters of the pixel format.

Pixel Format

GStreamer Format

Media Bus Format

GStreamer HEVC Profile

GStreamer AVC Profile

Kmssink Plane-id

Pixel Format

GStreamer Format

Media Bus Format

GStreamer HEVC Profile

GStreamer AVC Profile

Kmssink Plane-id

XV20

NV16_10LE32

UYVY10_1X20

main-422-10

high-4:2:2

34

XV15

NV12_10LE32

VYYUYY10_4X20

main-10

high-10

35

  • Display serial use case: Run the following gst-launch-1.0 command to display the XV20 HDR10 video on HDMI-Tx using the GStreamer pipeline ( capture(HDR10) → encode → decode → display(HDR10) ).

  • Record use case: Run the following gst-launch-1.0 command to record the XV20 HDR10 video using the GStreamer pipeline.

  • File Playback use case: Run the following gst-launch-1.0 command to play XV20 HDR10 recorded file on HDMI-Tx using the GStreamer pipeline.

  • Stream-out use case: Run the following gst-launch-1.0 command to stream-out the XV20 HDR10 video using the GStreamer pipeline.

  • Stream-in use case: Run the following gst-launch-1.0 command to display XV20 HDR10 stream-in video on HDMI-Tx using the GStreamer pipeline.

© Copyright 2019 - 2022 Xilinx Inc. Privacy Policy