This page provides all the information related to Design Module 12 - VCU TRD Xilinx low latency(LLP2) PL DDR NV16 HDMI design.

Table of Contents

1 Overview

This module enables capture of video from an HDMI-Rx subsystem implemented in the PL. The video can be displayed through the HDMI-Tx subsystem implemented in the PL. The module can stream-out and stream-in live captured video frames through an Ethernet interface at ultra-low latencies using Sync IP. This module supports multi-stream for NV16 pixel format. In this design PL_DDR is used for decoding and PS_DDR for encoding so that DDR bandwidth would be enough to support high bandwidth VCU applications requiring simultaneous encoder and decoder operations and transcoding at 4k @60 FPS.

The VCU encoder and decoder operate in slice mode. An input frame is divided into multiple slices (8 or 16) horizontally. The encoder generates a slice_done interrupt at every end of the slice. Generated NAL unit data can be passed to a downstream element immediately without waiting for the frame_done interrupt. The VCU decoder also starts processing data as soon as one slice of data is ready in its circular buffer instead of waiting for complete frame data. The Sync IP does an AXI transaction-level tracking so that the producer and consumer can be synchronized at the granularity of AXI transactions instead of granularity at the video buffer level. Sync IP is responsible for synchronizing buffers between Capture DMA and VCU encoder as both work on same buffer.

The capture element (FB write DMA) writes video buffers in raster-scan order. SyncIP monitors the buffer level while the capture element is writing into DRAM and allows the encoder to read input buffer data if the requested data is already written by DMA, otherwise it blocks the encoder until DMA completes its writes. On the decoder side, the VCU decoder writes decoded video buffer data into DRAM in block-raster scan order and displays reads data in raster-scan order. To avoid display under-run problems, software ensures a phase difference of "~frame_period/2", so that decoder is ahead compare to display.

This design supports the following video interfaces:

Sources:

Sinks:

VCU Codec:

Video format:

Supported Resolution:

The table below provides the supported resolution from command line app only in this design.

Resolution

Command Line

Single Stream

Multi-stream

4kp60

NA

4kp30

√ (Max 2)

1080p60

√ (Max 4 for encoder) (Max 2 for decoder)

√ - Supported
NA – Not applicable
x – Not supported

note

When using Low Latency mode (LLP1/LLP2), The encoder and decoder are limited by the number of internal cores. The encoder has a maximum of four streams and the decoder has a maximum of two streams.

When using Low Latency mode (LLP1/LLP2), The encoder and decoder are limited by the number of internal cores. The encoder has a maximum of four streams and the decoder has a maximum of two streams.

The below table gives information about the features supported in this design. 

Pipeline

Input source

Format

Output Type

Resolution

VCU codec

Serial pipeline

HDMI-Rx

NV16

HDMI-Tx

4kp60/4kp30/1080p60

HEVC/AVC

Stream-Out pipeline

HDMI-Rx

NV16

Stream-Out

4kp60/4kp30/1080p60

HEVC/AVC

Stream-in pipeline

Stream-In

NV16

HDMI-Tx

4kp60/4kp30/1080p60

HEVC/AVC

The below figure shows the Xilinx Low Latency PL DDR NV16 HDMI design hardware block diagram.

The below figure shows the Xilinx Low Latency PL DDR NV16 HDMI design software block diagram.

1.1 Board Setup

Refer below link for Board Setup

1.2 Run Flow

The TRD package is released with the source code, Vivado project, Petalinux BSP, and SD card image that enables the user to run the demonstration. It also includes the binaries necessary to configure and boot the ZCU106 board. Prior to running the steps mentioned in this wiki page, download the TRD package and extract its contents to a directory referred to as ‘TRD_HOME' which is the home directory.

TRD package contents are placed in the following directory structure. The user needs to copy all the files from the $TRD_HOME/images/vcu_llp2_hdmi_nv16/ to FAT32 formatted SD card directory.

rdf0428-zcu106-vcu-trd-2020.1
├── apu
│   └── vcu_petalinux_bsp
├── images
│   ├── vcu_10g
│   ├── vcu_audio
│   ├── vcu_hdmi_multistream_xv20
│   ├── vcu_hdmi_rx
│   ├── vcu_hdmi_tx
│   ├── vcu_llp2_hdmi_nv12
│   ├── vcu_llp2_hdmi_nv16
│   ├── vcu_llp2_hdmi_xv20
│   ├── vcu_llp2_sdi_xv20
│   ├── vcu_multistream_nv12
│   ├── vcu_pcie
│   ├── vcu_sdirx
│   ├── vcu_sditx
│   └── vcu_sdi_xv20
├── pcie_host_package
│   ├── COPYING
│   ├── include
│   ├── libxdma
│   ├── LICENSE
│   ├── readme.txt
│   ├── RELEASE
│   ├── tests
│   ├── tools
│   └── xdma
├── pl
│   ├── constrs
│   ├── designs
│   ├── prebuild
│   ├── README.md
│   └── srcs
└── README.txt

TRD package contents specific to VCU Xilinx Low Latency PL DDR NV16 HDMI design are placed in the following directory structure.

rdf0428-zcu106-vcu-trd-2020.1
├── apu
│   └── vcu_petalinux_bsp
│       └── xilinx-vcu-zcu106-v2020.1-final.bsp
├── images
│   ├── vcu_llp2_hdmi_nv16
│   │   ├── autostart.sh
│   │   ├── BOOT.BIN
│   │   ├── boot.scr
│   │   ├── config
│   │   ├── image.ub
│   │   ├── system.dtb
│   │   └── vcu
├── pcie_host_package
├── pl
│   ├── constrs
│   ├── designs
│   │   ├── zcu106_llp2_nv16
│   ├── prebuild
│   │   ├── zcu106_llp2_nv16
│   ├── README.md
│   └── srcs
│       ├── hdl
│       └── ip
└── README.txt

Configuration files(input.cfg) for various resolutions are placed in the following directory structure in /media/card.

config
├── 1-4kp60
│   ├── Display
│   └── Stream-out
├── 2-1080p60
│   ├── Display
│   └── Stream-out
├── 2-4kp30
│   ├── Display
│   └── Stream-out
└── 4-1080p60
│   └── Stream-out
└── input.cfg

1.2.1 GStreamer Application (vcu_gst_app)

The vcu_gst_app is a command line multi-threaded linux application. The command line application requires an input configuration file (input.cfg) to be provided in the plain text.

Run below modetest command to set CRTC configurations for 4kp60:

$ modetest -D a00c0000.v_mix -s 38:3840x2160-60@BG24

Run below modetest command to set CRTC configurations for 4kp30:

$ modetest -D a00c0000.v_mix -s 38:3840x2160-30@BG24

Execution of the application is shown below:

$ vcu_gst_app < path to *.cfg file>

Example:

note
  • Make sure HDMI-Rx should be configured to 4kp60 mode, while running below example pipelines.

  • Low latency(LLP1/LLP2) stream-in pipelines are not supported in vcu_gst_app.

  • Make sure HDMI-Rx should be configured to 4kp60 mode, while running below example pipelines.

  • Low latency(LLP1/LLP2) stream-in pipelines are not supported in vcu_gst_app.

4kp60 NV16 HEVC_25Mbps ultra low-latency(LLP2) display pipeline execution.

$ vcu_gst_app /media/card/config/1-4kp60/Display/Single_4kp60_HEVC_25_Mbps.cfg

4kp60 NV16 HEVC_25Mbps ultra low-latency(LLP2) stream-out pipeline execution.

$ vcu_gst_app /media/card/config/1-4kp60/Stream-out/Single_4kp60_HEVC_25_Mbps.cfg

4kp60 NV16 HEVC ultra low-latency(LLP2) stream-in pipeline execution.

$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, media=video, clock-rate=90000, payload=96, encoding-name=H265" ! rtpjitterbuffer latency=7 ! rtph265depay ! h265parse ! video/x-h265, alignment=nal ! omxh265dec low-latency=1 ! video/x-raw\(memory:XLNXLL\) ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink bus-id=a00c0000.v_mix" sync=true -v

For LLP1/LLP2 Multistream HEVC serial and stream-out use-cases (2-4kp30, 2-1080p60, 4-1080p60), use ENC_EXTRA_OP_BUFFERS=10 variable before vcu_gst_app command. Below is the sample pipeline:

$ ENC_EXTRA_OP_BUFFERS=10 vcu_gst_app /media/card/config/2-4kp30/Display/2_4kp30_HEVC_12_5_Mbps.cfg
note

The above variable is recommended to use for LLP1/LLP2 multi-stream HEVC use-cases only.

The above variable is recommended to use for LLP1/LLP2 multi-stream HEVC use-cases only.

To measure the latency of the pipeline, run the below command. The latency data is huge, so dump it to a file.

$ GST_DEBUG="GST_TRACER:7" GST_TRACERS="latency" GST_DEBUG_FILE=/run/latency.log vcu_gst_app /media/card/config/< path to *.cfg file>

Refer below link for detailed run flow steps:

1.3 Build Flow

Refer below link for detailed build flow steps:


2 Other Information

2.1 Known Issues

2.2 Limitations

2.3 Optimum VCU Encoder parameters for use-cases

Video streaming:

Performance: AVC Encoder settings:

Quality: Low bitrate AVC encoding:


3 Appendix A - Input Configuration File (input.cfg)

The example configuration files are stored at /media/card/config/ folder.

Common Configuration:
It is the starting point of common configuration.
 
Num of Input:
1, 2, 3, 4

Output:
Select the video interface.
Options: HDMI

Out Type:
Options: display and stream

Display Rate:
Pipeline frame rate.
Options: 30 FPS or 60 FPS for each stream.

Exit:
It indicates to the application that the configuration is over.

Input Configuration:
It is the starting point of the input configuration.

Input Num:
Starting Nth input configuration.
Options: 1, 2, 3, 4

Input Type:
Input source type.
Options: HDMI

Raw:
To tell the pipeline is processed or pass-through.
Options: False

note

Raw use-case is not supported for both LLP2 and non-LLP2 use-case as mixer is not connected to PS DDR.

Raw use-case is not supported for both LLP2 and non-LLP2 use-case as mixer is not connected to PS DDR.

Width:
The width of the live source.
Options: 3840, 1920

Height:
The height of the live source.
Options: 2160, 1080

Format:
The format of input data.
Options: NV16

Enable LLP2:
To enable LLP2 configuration.
Options: True

note

Set Enable LLP2 equals to False for non-LLP2 use-case.

Set Enable LLP2 equals to False for non-LLP2 use-case.

Exit:
It indicates to the application that the configuration is over.

Encoder Configuration:
It is the starting point of encoder configuration.

Encoder Num:
Starting Nth encoder configuration.
Options: 1, 2, 3, 4

Encoder Name:
Name of the encoder.
Options: AVC, HEVC

Profile:
Name of the profile.
Options: high for AVC and main for HEVC.

Rate Control:
Rate control options.
Options: low_latency.

Filler Data:
Filler Data NAL units for CBR rate control.
Options: False

QP:
QP control mode used by the VCU encoder.
Options: Uniform, Auto

L2 Cache:
Enable or Disable L2Cache buffer in encoding process.
Options: True, False

Latency Mode:
Encoder latency mode.
Options: sub_frame

Low Bandwidth:
If enabled, decrease the vertical search range used for P-frame motion estimation to reduce the bandwidth.
Options: True, False

Gop Mode:
Group of Pictures mode.
Options: Basic, low_delay_p, low_delay_b

Bitrate:
Target bitrate in Kbps
Options: 1-25000

B Frames:
Number of B-frames between two consecutive P-frames
Options: 0

Slice:
The number of slices produced for each frame. Each slice contains one or more complete macroblock/CTU row(s). Slices are distributed over the frame as regularly as possible. If slice-size is defined as well more slices may be produced to fit the slice-size requirement.
Options:
4-22 4kp resolution with HEVC codec
4-32 4kp resolution with AVC codec
4-32 1080p resolution with HEVC codec
4-32 1080p resolution with AVC codec

note

The recommended slice for LLP2 use-case is 8.

The recommended slice for LLP2 use-case is 8.

GoP Length:
The distance between two consecutive I frames
Options: 1-1000

GDR Mode:
It specifies which Gradual Decoder Refresh(GDR) scheme should be used when gop-mode = low_delay_p
Options: Horizontal/Vertical/Disabled

note

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only.

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only.

Entropy Mode:
It specifies the entropy mode for H.264 (AVC) encoding process
Options: CAVLC/CABAC/Default

Max Picture Size:
It is used to curtail instantaneous peak in the bit-stream using this parameter. It works in CBR/VBR rate-control only. When it is enabled, max-picture-size value is calculated and set with 10% of AllowedPeakMargin. i.e. max-picture-size =  (TargetBitrate / FrameRate) * 1.1.
Options: TRUE/FALSE

Preset:
Options: Custom

Exit:
It indicates to the application that the configuration is over.

Streaming Configuration:
It is the starting point of streaming configuration.

Streaming Num:
Starting Nth Streaming configuration.
Options: 1, 2, 3, 4

Host IP:
The host to send the packets to
Options: 192.168.25.89 or Windows PC IP

Port:
The port to send the packets to
Options: 5004, 5008, 5012 and 5016

Trace Configuration:
It is the starting point of trace configuration.

FPS Info:
To display fps info on the console.
Options: True, False

APM Info:
To display APM counter number on the console.
Options: True, False

Pipeline Info:
To display pipeline info on console.
Options: True, False

Exit:
It indicates to the application that the configuration is over.


4 Appendix B - HDMI-Rx/Tx Link-up and GStreamer Commands

This section covers configuration of HDMI-Rx using media-ctl utility and HDMI-Tx using modetest utility, along with demonstrating HDMI-Rx/Tx link-up issues and steps to switch HDMI-Rx resolution. It also contains sample GStreamer Low-Latency NV16 and Xilinx’s Ultra Low-Latency NV16 Video pipelines for Display, Stream-In and Stream-Out use-cases.

$ media-ctl -p -d /dev/mediaX
$ media-ctl -p -d /dev/mediaX
root@zcu106_vcu_trd:~# media-ctl -p -d /dev/media3 -----> media node for HDMI input source
Media controller API version 5.4.0

Media device information
------------------------
driver          xilinx-video
model           Xilinx Video Composite Device
serial          
bus info        
hw revision     0x0
driver version  5.4.0

Device topology
- entity 1: vcap_hdmi output 0 (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video0     -----> Video node for HDMI-Rx source
	pad0: Sink
		<- "a0040000.v_proc_ss":1 [ENABLED]

- entity 5: a0040000.v_proc_ss (2 pads, 2 links)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev3
	pad0: Sink
		[fmt:VYYUYY10_4X20/1280x720 field:none colorspace:srgb]
		<- "a0000000.v_hdmi_rx_ss":0 [ENABLED]
	pad1: Source
		[fmt:VYYUYY10_4X20/1920x1080 field:none colorspace:srgb]
		-> "vcap_hdmi output 0":0 [ENABLED]

- entity 8: a0000000.v_hdmi_rx_ss (1 pad, 1 link)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev4
	pad0: Source
		[fmt:RBG888_1X24/3840x2160 field:none colorspace:srgb]
		[dv.caps:BT.656/1120 min:0x0@25000000 max:4096x2160@297000000 stds:CEA-861,DMT,CVT,GTF caps:progressive,reduced-blanking,custom]
		[dv.detect:BT.656/1120 3840x2160p60 (4400x2250) stds:CEA-861 flags:CE-video]    -----> Resolution and Frame-rate of HDMI-Rx source
		-> "a0040000.v_proc_ss":0 [ENABLED]
note

Check resolution and frame-rate of dv.detect under v_hdmi_rx_ss node.

Check resolution and frame-rate of dv.detect under v_hdmi_rx_ss node.

root@zcu106_vcu_trd:~# media-ctl -p -d /dev/media3    -----> media node for HDMI input source
Media controller API version 5.4.0

Media device information
------------------------
driver          xilinx-video
model           Xilinx Video Composite Device
serial          
bus info        
hw revision     0x0
driver version  5.4.0

Device topology
- entity 1: vcap_hdmi output 0 (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video0    -----> Video node for HDMI-Rx source
	pad0: Sink
		<- "a0040000.v_proc_ss":1 [ENABLED]

- entity 5: a0040000.v_proc_ss (2 pads, 2 links)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev3
	pad0: Sink
		[fmt:VYYUYY10_4X20/1280x720 field:none colorspace:srgb]
		<- "a0000000.v_hdmi_rx_ss":0 [ENABLED]
	pad1: Source
		[fmt:VYYUYY10_4X20/1920x1080 field:none colorspace:srgb]
		-> "vcap_hdmi output 0":0 [ENABLED]

- entity 8: a0000000.v_hdmi_rx_ss (1 pad, 1 link)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev4
	pad0: Source
		[fmt:RBG888_1X24/3840x2160 field:none colorspace:srgb]
		[dv.caps:BT.656/1120 min:0x0@25000000 max:4096x2160@297000000 stds:CEA-861,DMT,CVT,GTF caps:progressive,reduced-blanking,custom]
		[dv.query:no-link]    -----> HDMI-Rx Link Status
		-> "a0040000.v_proc_ss":0 [ENABLED]
note

dv.query:no-link under v_hdmi_rx_ss node shows HDMI-Rx source is not connected or HDMI-Rx source is not active (Try waking up the device by pressing a key on remote).

dv.query:no-link under v_hdmi_rx_ss node shows HDMI-Rx source is not connected or HDMI-Rx source is not active (Try waking up the device by pressing a key on remote).

Notes for gst-launch-1.0 commands:

$ media-ctl -p -d /dev/media3
$ media-ctl -d /dev/media3 -V "\"a0040000.v_proc_ss\":0 [fmt:RBG888_1X24/3840x2160 field:none]"
$ media-ctl -d /dev/media3 -V "\"a0040000.v_proc_ss\":1 [fmt:UYVY8_1X16/3840x2160 field:none]"
note

Make sure NVIDIA SHIELD is configured for 4kp resolution and RBG888_1X24 format.

Make sure NVIDIA SHIELD is configured for 4kp resolution and RBG888_1X24 format.

$ vcu_gst_app /media/card/config/input.cfg
Common Configuration    : START
Num Of Input            : 1
Output                  : HDMI
Out Type                : Display
Frame Rate              : 60
Exit

Input Configuration     : START
Input Num               : 1
Input Type              : hdmi_1
Raw                     : FALSE
Width                   : 1920
Height                  : 1080
Format                  : NV16
Enable LLP2             : FALSE
Exit

Encoder Configuration   : START
Encoder Num             : 1
Encoder Name            : HEVC
Profile                 : Main
Rate Control            : Low_Latency
Filler Data             : False
QP                      : Auto
L2 Cache                : TRUE
Latency Mode            : Sub_Frame
Low Bandwidth           : FALSE
Gop Mode                : Basic
Bitrate                 : 25000
B Frames                : 0
Slice                   : 8
GoP Length              : 60
GDR Mode		: Horizontal
Preset                  : Custom
Exit
$ modetest -D a00c0000.v_mix -s 38:3840x2160-60@BG24

Pixel Format

GStreamer Format

Media Bus Format

GStreamer HEVC Profile

GStreamer AVC Profile

Kmssink Plane-id

NV16

NV16

UYVY8_1X16

main-422

high-4:2:2

33 and 34

note
  • Video0 in the each gst-launch pipelines indicates a video node for the input source.

  • Make sure HDMI-Rx should be configured to 4kp60 mode, while running below example pipelines.

  • LLP1/LLP2 stream-in pipelines are not supported using vcu_gst_app.

  • For LLP1/LLP2 Multi-stream HEVC serial and stream-out use-cases (2-4kp30, 2-1080p60, 4-1080p60), use ENC_EXTRA_OP_BUFFERS=10 variable before gst-launch-1.0 command.

  • For LLP1/LLP2 Multi-stream serial and stream-in use-cases (2-4kp30, 2-1080p60, 4-1080p60), use internal-entropy-buffers=3 property in decoder.

  • Video0 in the each gst-launch pipelines indicates a video node for the input source.

  • Make sure HDMI-Rx should be configured to 4kp60 mode, while running below example pipelines.

  • LLP1/LLP2 stream-in pipelines are not supported using vcu_gst_app.

  • For LLP1/LLP2 Multi-stream HEVC serial and stream-out use-cases (2-4kp30, 2-1080p60, 4-1080p60), use ENC_EXTRA_OP_BUFFERS=10 variable before gst-launch-1.0 command.

  • For LLP1/LLP2 Multi-stream serial and stream-in use-cases (2-4kp30, 2-1080p60, 4-1080p60), use internal-entropy-buffers=3 property in decoder.

Run the following gst-launch-1.0 command to display NV16 video on HDMI-Tx using low-latency (LLP1) GStreamer pipeline..

$ gst-launch-1.0 -v v4l2src io-mode=dmabuf device=/dev/video0 ! video/x-raw, width=3840, height=2160, format=NV16, framerate=60/1 ! omxh265enc num-slices=8 control-rate=low-latency gop-mode=low-delay-p target-bitrate=25000 cpb-size=500 gdr-mode=horizontal initial-delay=250 periodicity-idr=240 filler-data=0 prefetch-buffer=true ! video/x-h265, alignment=nal ! queue max-size-buffers=0 ! omxh265dec low-latency=1 internal-entropy-buffers=5 ! video/x-raw ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink bus-id=a00c0000.v_mix hold-extra-sample=1 show-preroll=false sync=true' sync=true -v

Run the following gst-launch-1.0 command to display NV16 video on HDMI-Tx using Xilinx's ultra low-latency(LLP2) GStreamer pipeline.

$ gst-launch-1.0 -v v4l2src io-mode=dmabuf device=/dev/video0 ! video/x-raw\(memory:XLNXLL\), width=3840, height=2160, format=NV16, framerate=60/1 ! omxh265enc num-slices=8 control-rate=low-latency gop-mode=low-delay-p target-bitrate=25000 cpb-size=500 gdr-mode=horizontal initial-delay=250 periodicity-idr=240 filler-data=0 prefetch-buffer=true ! video/x-h265, alignment=nal ! queue max-size-buffers=0 ! omxh265dec low-latency=1 internal-entropy-buffers=5 ! video/x-raw\(memory:XLNXLL\) ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink bus-id=a00c0000.v_mix hold-extra-sample=1 show-preroll=false sync=true' sync=true -v

Run the following gst-launch-1.0 command to stream-out NV16 video using low-latency(LLP1) GStreamer pipeline. where, 192.168.25.89 is host/client IP address and 5004 is port number.

$ gst-launch-1.0 -v v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV16, width=3840, height=2160, framerate=60/1 ! omxh265enc num-slices=8 periodicity-idr=240 cpb-size=500 gdr-mode=horizontal initial-delay=250 control-rate=low-latency prefetch-buffer=true target-bitrate=25000 gop-mode=low-delay-p ! video/x-h265, alignment=nal ! rtph265pay ! udpsink buffer-size=60000000 host=192.168.25.89 port=5004 async=false max-lateness=-1 qos-dscp=60 max-bitrate=120000000 -v

Run the following gst-launch-1.0 command to display NV16 stream-in video on HDMI-Tx using low-latency(LLP1) GStreamer pipeline. where, 5004 is port number.

$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, media=video, clock-rate=90000, payload=96, encoding-name=H265" ! rtpjitterbuffer latency=7 ! rtph265depay ! h265parse ! video/x-h265, alignment=nal ! omxh265dec low-latency=1 internal-entropy-buffers=5 ! video/x-raw ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink bus-id=a00c0000.v_mix" sync=true -v

Run the following gst-launch-1.0 command to stream-out NV16 video using Xilinx's ultra low-latency(LLP2) GStreamer pipeline. where, 192.168.25.89 is host/client IP address and 5004 is port number.

$ gst-launch-1.0 -v v4l2src device=/dev/video0 io-mode=4 ! video/x-raw\(memory:XLNXLL\), format=NV16, width=3840, height=2160, framerate=60/1 ! omxh265enc num-slices=8 periodicity-idr=240 cpb-size=500 gdr-mode=horizontal initial-delay=250 control-rate=low-latency prefetch-buffer=true target-bitrate=25000 gop-mode=low-delay-p ! video/x-h265, alignment=nal ! rtph265pay ! udpsink buffer-size=60000000 host=192.168.25.89 port=5004 async=false max-lateness=-1 qos-dscp=60 max-bitrate=120000000 -v

Run the following gst-launch-1.0 command to display NV16 stream-in video on HDMI-Tx using Xilinx's ultra low-latency(LLP2) GStreamer pipeline. where, 5004 is port no.

$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, media=video, clock-rate=90000, payload=96, encoding-name=H265" ! rtpjitterbuffer latency=7 ! rtph265depay ! h265parse ! video/x-h265, alignment=nal ! omxh265dec low-latency=1 internal-entropy-buffers=5 ! video/x-raw\(memory:XLNXLL\) ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink bus-id=a00c0000.v_mix" sync=true -v