This page provides detailed information related to Design Module 14 - Xilinx Low Latency PL DDR XV20 SDI Video Capture and Display

Table of Contents

1 Overview

This module enables the capture of video from an SDI-Rx subsystem implemented in the PL. The video can be displayed through the SDI-Tx subsystem implemented in the PL. The module can stream-out and stream-in live captured video frames through an Ethernet interface at ultra-low latencies using Sync IP. This module supports multi-stream for XV20 pixel format. In this design, PL_DDR is used for decoding and PS_DDR for encoding so that DDR bandwidth would be enough to support high bandwidth VCU applications requiring simultaneous encoder and decoder operations and transcoding at 4k@60 FPS.

The VCU encoder and decoder operate in slice mode. An input frame is divided into multiple slices (8 or 16) horizontally. The encoder generates a slice_done interrupt at every end of the slice. Generated NAL unit data can be passed to a downstream element immediately without waiting for the frame_done interrupt. The VCU decoder also starts processing data as soon as one slice of data is ready in its circular buffer instead of waiting for complete frame data. The Sync IP does an AXI transaction-level tracking so that the producer and consumer can be synchronized at the granularity of AXI transactions instead of granularity at the video buffer level. Sync IP is responsible for synchronizing buffers between Capture DMA and VCU encoder as both works on the same buffer.

The capture element (FB write DMA) writes video buffers in raster-scan order. SyncIP monitors the buffer level while the capture element is writing into DRAM and allows the encoder to read input buffer data if the requested data is already written by DMA, otherwise it blocks the encoder until DMA completes its writes. On the decoder side, the VCU decoder writes decoded video buffer data into DRAM in block-raster scan order and displays reads data in raster-scan order. To avoid display under-run problems, the software ensures a phase difference of "~frame_period/2", so that decoder is ahead compared to display.

This design supports the following video interfaces:

Sources:

Sinks:

VCU Codec:

Video format:

Supported Resolution:

The table below provides the supported resolution from command line app only in this design.

Resolution

Command Line

Single Stream

Multi-stream

4Kp60/59.94

NA

4Kp30/29.97

NA

1080p60/59.94

NA

√ - Supported
NA – Not applicable

The below table gives information about the features supported in this design. 

Pipeline

Input source

Format

Output Type

Resolution

VCU Codec

Serial pipeline

SDI-Rx

XV20

SDI-Tx

4Kp60/4Kp30/1080p60

HEVC/AVC

Stream-Out pipeline

SDI-Rx

XV20

Stream-Out

4Kp60/4Kp30/1080p60

HEVC/AVC

Stream-In pipeline

Stream-In

XV20

SDI-Tx

4Kp60/4Kp30/1080p60

HEVC/AVC


The below figure shows the Xilinx Low-latency PL DDR SDI design hardware block diagram.

The below figure shows the Xilinx Low-latency PL DDR SDI design software block diagram.

1.1 Board Setup

Refer below link for Board Setup

1.2 Run Flow

The TRD package is released with the source code, Vivado project, Petalinux BSP, and SD card image that enables the user to run the demonstration. It also includes the binaries necessary to configure and boot the ZCU106 board. Prior to running the steps mentioned in this wiki page, download the TRD package and extract its contents to a directory referred to as TRD_HOME, which is the home directory.

TRD package contents are placed in the following directory structure. The user needs to copy all the files from the $TRD_HOME/images/vcu_llp2_sdi_xv20 to FAT32 formatted SD card directory.

rdf0428-zcu106-vcu-trd-2020-1
├── apu
│   └── vcu_petalinux_bsp
├── images
│   ├── vcu_10g
│   ├── vcu_audio
│   ├── vcu_hdmi_multistream_xv20
│   ├── vcu_hdmi_rx
│   ├── vcu_hdmi_tx
│   ├── vcu_llp2_hdmi_nv12
│   ├── vcu_llp2_hdmi_nv16
│   ├── vcu_llp2_hdmi_xv20
│   ├── vcu_llp2_sdi_xv20
│   ├── vcu_multistream_nv12
│   ├── vcu_pcie
│   ├── vcu_sdirx
│   ├── vcu_sditx
│   └── vcu_sdi_xv20
├── pcie_host_package
│   ├── COPYING
│   ├── include
│   ├── libxdma
│   ├── LICENSE
│   ├── readme.txt
│   ├── RELEASE
│   ├── tests
│   ├── tools
│   └── xdma
├── pl
│   ├── constrs
│   ├── designs
│   ├── prebuild
│   ├── README.md
│   └── srcs
└── README.txt

TRD package contents specific to VCU Xilinx Low Latency PL DDR XV20 SDI design are placed in the following directory structure.

rdf0428-zcu106-vcu-trd-2020-1
├── apu
│   └── vcu_petalinux_bsp
│   └── xilinx-vcu-zcu106-v2020.1-final.bsp
├── images
│   ├── vcu_llp2_sdi_xv20
│   │   ├── autostart.sh
│   │   ├── BOOT.BIN
│   │   ├── boot.scr
│   │   ├── config
│   │   ├── image.ub
│   │   ├── system.dtb
│   │   └── vcu
├── pl
│   ├── constrs
│   ├── designs
│   │   ├── zcu106_picxo_llp2_sdi
│   ├── prebuild
│   │   ├── zcu106_picxo_llp2_sdi
│   └── srcs
│       ├── hdl
│       └── ip
└── README.txt

Configuration files (input.cfg) for various resolutions are placed in the following directory structure in /media/card.

config
├── 1080p60
│   ├── Display
│   ├── Stream-in
│   └── Stream-out
├── 4kp30
│   ├── Display
│   ├── Stream-in
│   └── Stream-out
└── 4kp60
    ├── Display
    ├── Stream-in
    └── Stream-out

1.2.1 GStreamer Application (vcu_gst_app)

The vcu_gst_app is a command-line multi-threaded Linux application. The command-line application requires an input configuration file (input.cfg) to be provided in the plain text.

Run below modetest command to set CRTC configurations for 4Kp60:

$ modetest -M xlnx -s 34:3840x2160-60@XV20  -w 34:sdi_mode:5 -w 34:sdi_data_stream:8 -w 34:is_frac:0 

Run below modetest command to set CRTC configurations for 4Kp30:

$ modetest -M xlnx -s 34:3840x2160-60@XV20  -w 34:sdi_mode:4 -w 34:sdi_data_stream:8 -w 34:is_frac:0

Run below modetest command to set CRTC configurations for 4Kp59.94:

$ modetest -M xlnx -s 34:3840x2160-60@XV20  -w 34:sdi_mode:5 -w 34:sdi_data_stream:8 -w 34:is_frac:1 

Run below modetest command to set CRTC configurations for 4Kp29.97

$ modetest -M xlnx -s 34:3840x2160-60@XV20  -w 34:sdi_mode:4 -w 34:sdi_data_stream:8 -w 34:is_frac:1

Execution of the application is shown below:

$ vcu_gst_app < path to *.cfg file>

Example:

4kp60 XV20 HEVC_25Mbps Display Pipeline execution.

$ vcu_gst_app /media/card/config/4kp60/Display/Single_4kp60_HEVC_25Mbps.cfg

4kp60 XV20 HEVC_25Mbps low-delay-p Stream-out Pipeline execution.

$ vcu_gst_app /media/card/config/4kp60/Stream-out/Single_4kp60_HEVC_25Mbps.cfg

4kp60 XV20 HEVC_HIGH Stream-in Pipeline execution

$ sh /media/card/config/4kp60/Stream-in/Single_4kp60_HEVC_25Mbps.sh
note

Make sure SDI-Rx should be configured to 4kp60 mode.

Make sure SDI-Rx should be configured to 4kp60 mode.

To measure the latency of the pipeline, run the below command. The latency data is huge, so dump it to a file.

$ GST_DEBUG="GST_TRACER:7" GST_TRACERS="latency" GST_DEBUG_FILE=/media/card/latency_log.log vcu_gst_app /media/card/config/4kp60/Display/Single_4kp60_HEVC_25Mbps.cfg

Refer below link for detailed run flow steps

1.3 Build Flow

Refer below link for detailed build flow steps


2 Other Information

2.1 Known Issues

2.2 Limitations

2.3 Optimum VCU Encoder parameters for use-cases

Video streaming:

Performance: AVC Encoder settings:

Quality: Low bitrate AVC encoding:


3 Appendix A - Input Configuration File (input.cfg)

The example configuration files are stored at /media/card/config/ folder.

Common Configuration:
It is the starting point of common configuration.

Num of Input:
Options: 1

Output:
Select the video interface.
Options: SDI

Out Type:
Options: display and stream

Display Rate:
Pipeline frame rate.
Options: 30 FPS or 60 FPS for each stream.

Exit:
It indicates to the application that the configuration is over.

Input Configuration:
It is the starting point of the input configuration.

Input Num:
Starting Nth input configuration.
Options: 1

Input Type:
Input source type.
Options: SDI

Raw:
To tell the pipeline is processed or pass-through.
Options: False

note

Raw use-case is not supported

Raw use-case is not supported

Width:
The width of the live source.
Options: 3840, 1920

Height:
The height of the live source.
Options: 2160, 1080

Format:
The format of input data.
Options: XV20

Enable LLP2:
To enable LLP2 use-case.
Options: True

Exit:
It indicates to the application that the configuration is over.

Encoder Configuration:
It is the starting point of encoder configuration.

Encoder Num:
Starting Nth encoder configuration.
Options: 1, 2

Encoder Name:
Name of the encoder.
Options: AVC, HEVC

Profile:
Name of the profile.
Options: high for AVC and main for HEVC.

Rate Control:
Rate control options.
Options: low_latency.

Filler Data:
Filler Data NAL units for CBR rate control.
Options: False

QP:
QP control mode used by the VCU encoder.
Options: Uniform, Auto

L2 Cache:
Enable or Disable L2Cache buffer in encoding process.
Options: True, False

Latency Mode:
Encoder latency mode.
Options: sub_frame

Low Bandwidth:
If enabled, decrease the vertical search range used for P-frame motion estimation to reduce the bandwidth.
Options: True, False

Gop Mode:
Group of Pictures mode.
Options: Basic, low_delay_p, low_delay_b

Bitrate:
Target bitrate in Kbps
Options: 1-25000

B Frames:
Number of B-frames between two consecutive P-frames
Options: 0

Slice:
The number of slices produced for each frame. Each slice contains one or more complete macroblock/CTU row(s). Slices are distributed over the frame as regularly as possible. If slice-size is defined as well more slices may be produced to fit the slice-size requirement.
Options:
4-22 4Kp resolution with HEVC codec
4-32 4Kp resolution with AVC codec
4-32 1080p resolution with HEVC codec
4-32 1080p resolution with AVC codec

note

The recommended is 8 for LLP2 use-case.

The recommended is 8 for LLP2 use-case.

GoP Length:
The distance between two consecutive I frames
Options: 1-1000

GDR Mode:
It specifies which Gradual Decoder Refresh(GDR) scheme should be used when gop-mode = low_delay_p
Options: Horizontal, Vertical, Disabled

note

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only

Entropy Mode:
It specifies the entropy mode for H.264 (AVC) encoding process
Options: CAVLC, CABAC, Default

Max Picture Size:
It is used to curtail instantaneous peak in the bit-stream. When it is enabled, max-picture-size value is calculated and set with 10% of AllowedPeakMargin.
i.e. max-picture-size = (TargetBitrate / FrameRate) * 1.1
Options: TRUE, FALSE

note

It works in CBR/VBR rate-control only

It works in CBR/VBR rate-control only

Preset:
Options: Custom

Exit
It indicates to the application that the configuration is over.

Streaming Configuration:
It is the starting point of streaming configuration.

Streaming Num:
Starting Nth Streaming configuration.
Options: 1

Host IP:
The host to send the packets to
Options: 192.168.25.89 or Windows PC IP

Port:
The port to send the packets to
Options: 5004, 5008, 5012 and 5016

Exit
It indicates to the application that the configuration is over.

Trace Configuration:
It is the starting point of trace configuration.

FPS Info:
To display fps info on the console.
Options: True, False

APM Info:
To display APM counter number on the console.
Options: True, False

Pipeline Info:
To display pipeline info on the console.
Options: True, False

Exit
It indicates to the application that the configuration is over.


4 Appendix B - SDI-Rx/Tx Link-up and GStreamer Commands

This section covers configuration of SDI-Rx using media-ctl utility and SDI-Tx using modetestutility, along with demonstrating SDI-Rx/Tx link-up issue and steps to switch resolution. It also contains sample Gstreamer SDI XV20 Xilinx’s Ultra Low-Latency and Video pipelines for Display, Stream-In and Stream-Out use-cases.

$ media-ctl -p -d /dev/mediaX
note

Check resolution and frame-rate of dv.detect under v_smpte_uhdsdi_rx_ss node.

Check resolution and frame-rate of dv.detect under v_smpte_uhdsdi_rx_ss node.

# media-ctl -d /dev/media0 -p -----> media node for SDI input source
Media controller API version 5.4.0

Media device information
------------------------
driver          xilinx-video
model           Xilinx Video Composite Device
serial
bus info
hw revision     0x0
driver version  5.4.0

Device topology
- entity 1: vcap_sdirx output 0 (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video0  -----> Video node for SDI input source
        pad0: Sink
                <- "a0030000.v_smpte_uhdsdi_rx_ss":0 [ENABLED]

- entity 5: a0030000.v_smpte_uhdsdi_rx_ss (1 pad, 1 link)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev0
        pad0: Source
                [fmt:UYVY10_1X20/3840x2160@1001/60000 field:none]
                [dv.detect:BT.656/1120 3840x2160p60 (4400x2250) stds:CEA-861 flags:can-reduce-fps,CE-video,has-cea861-vic]  ---> SDI-Rx link up
                -> "vcap_sdirx output 0":0 [ENABLED]
# media-ctl -d /dev/media0 -p -----> media node for SDI input source
Media controller API version 5.4.0

Media device information
--[ 1215.787801] xilinx-sdirxss a0030000.v_smpte_uhdsdi_rx_ss: Video not locked!
----------------------
driver          xilinx-video
model           Xilinx Video Composite Device
serial
bus info
hw revision     0x0
driver version  5.4.0

Device topology
- entity 1: vcap_sdirx output 0 (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video0
        pad0: Sink
                <- "a0030000.v_smpte_uhdsdi_rx_ss":0 [ENABLED]

- entity 5: a0030000.v_smpte_uhdsdi_rx_ss (1 pad, 1 link)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev0
        pad0: Source
                [dv.query:no-lock]                           ----------------> link is not detected
                -> "vcap_sdirx output 0":0 [ENABLED]
note

Here dv.query:no-link under v_smpte_uhdsdi_rx_ss node shows SDI-Rx source is not connected or SDI-Rx source is not active (Try waking up the device by pressing a key on remote).

Here dv.query:no-link under v_smpte_uhdsdi_rx_ss node shows SDI-Rx source is not connected or SDI-Rx source is not active (Try waking up the device by pressing a key on remote).

$ vcu_gst_app /media/card/config/input.cfg

Below configurations needs to be set in input.cfg for SDI-1080p60.

Common Configuration    : START
Num Of Input            : 1
Output                  : SDI
Out Type                : Display
Frame Rate              : 60
Exit

Input Configuration     : START
Input Num               : 1
Input Type              : SDI
Raw                     : TRUE
Width                   : 1920
Height                  : 1080
Format                  : XV20
Enable LLP2             : TRUE
Exit
$ modetest -M xlnx -s 34:3840x2160-60@XV20  -w 34:sdi_mode:5 -w 34:sdi_data_stream:8 -w 34:is_frac:0 
note

After booting you need to run the modetest command(mandatory) for respective resolution you want to validate.

After booting you need to run the modetest command(mandatory) for respective resolution you want to validate.

Pixel Format

GStreamer Format

Media Bus Format

GStreamer HEVC Profile

GStreamer AVC Profile

Kmssink Plane-id

XV20

NV16_10LE32

UYVY10_1X20

main-422-10

high-4:2:2

32 and 33

note

Video0 in the each below gst-launch pipelines indicates a video node for the input source.

Video0 in the each below gst-launch pipelines indicates a video node for the input source.

$ gst-launch-1.0 v4l2src io-mode=4 device=/dev/video0 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc num-slices=8 control-rate=low-latency gop-mode=low-delay-p target-bitrate=25000 cpb-size=500 gdr-mode=horizontal initial-delay=250 periodicity-idr=240 filler-data=0 prefetch-buffer=true ! video/x-h265, alignment=nal ! queue max-size-buffers=0 ! omxh265dec low-latency=1 ! video/x-raw ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink driver-name=xlnx max-lateness=5000000 show-preroll-frame=false sync=true" sync=true -v
$ gst-launch-1.0 v4l2src io-mode=4 device=/dev/video0 ! video/x-raw\(memory:XLNXLL\), width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc num-slices=8 control-rate=low-latency gop-mode=low-delay-p target-bitrate=25000 cpb-size=500 gdr-mode=horizontal initial-delay=250 periodicity-idr=240 filler-data=0 prefetch-buffer=true ! video/x-h265, alignment=nal ! queue max-size-buffers=0 ! omxh265dec low-latency=1 ! video/x-raw\(memory:XLNXLL\) ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink driver-name=xlnx max-lateness=5000000 show-preroll-frame=false sync=true" sync=true -v
$ gst-launch-1.0 v4l2src io-mode=4 device=/dev/video0 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc num-slices=8 periodicity-idr=240 cpb-size=500 gdr-mode=horizontal initial-delay=250 control-rate=low-latency prefetch-buffer=true target-bitrate=25000 gop-mode=low-delay-p ! video/x-h265, alignment=nal ! rtph265pay ! udpsink host=192.168.25.89 port=5004 buffer-size=60000000 max-bitrate=120000000 max-lateness=-1 qos-dscp=60 async=false
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, media=video, clock-rate=90000, payload=96, encoding-name=H265" ! rtpjitterbuffer latency=7 ! rtph265depay ! h265parse ! video/x-h265, alignment=nal ! omxh265dec low-latency=1 ! video/x-raw ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink driver-name=xlnx" sync=true -v
$ gst-launch-1.0 v4l2src io-mode=4 device=/dev/video0 ! video/x-raw\(memory:XLNXLL\), width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc num-slices=8 periodicity-idr=240 cpb-size=500 gdr-mode=horizontal initial-delay=250 control-rate=low-latency prefetch-buffer=true target-bitrate=25000 gop-mode=low-delay-p ! video/x-h265, alignment=nal ! rtph265pay ! udpsink host=192.168.25.89 port=5004 buffer-size=60000000 max-bitrate=120000000 max-lateness=-1 qos-dscp=60 async=false
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, media=video, clock-rate=90000, payload=96, encoding-name=H265" ! rtpjitterbuffer latency=7 ! rtph265depay ! h265parse ! video/x-h265, alignment=nal ! omxh265dec low-latency=1 ! video/x-raw\(memory:XLNXLL\) ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink driver-name=xlnx" sync=true -v