Zynq UltraScale+ MPSoC VCU TRD 2021.1 - Xilinx Low Latency PL DDR XV20 HDMI Video Capture and Display
This page provides all the information related to Design Module 9 - VCU TRD Xilinx low latency(LLP2) PL DDR XV20 HDMI design.
Table of Contents
1 Overview
This module enables capture of video from an HDMI-Rx subsystem implemented in the PL. The video can be displayed through the HDMI-Tx subsystem implemented in the PL. The module can stream-out and stream-in live captured video frames through an Ethernet interface at ultra-low latencies using Sync IP. This module supports four video streams using AXI broadcaster at capture side and mixer at display side for XV20 pixel format. In this design PL_DDR is used for decoding and PS_DDR for encoding so that DDR bandwidth would be enough to support high bandwidth VCU applications requiring simultaneous encoder and decoder operations and transcoding at 4k @60 FPS.
The VCU encoder and decoder operate in slice mode. An input frame is divided into multiple slices (8 or 16) horizontally. The encoder generates a slice_done interrupt at every end of the slice. Generated NAL unit data can be passed to a downstream element immediately without waiting for the frame_done interrupt. The VCU decoder also starts processing data as soon as one slice of data is ready in its circular buffer instead of waiting for complete frame data. The Sync IP does an AXI transaction-level tracking so that the producer and consumer can be synchronized at the granularity of AXI transactions instead of granularity at the video buffer level. Sync IP is responsible for synchronizing buffers between Capture DMA and VCU encoder as both work on same buffer.
The capture element (FB write DMA) writes video buffers in raster-scan order. SyncIP monitors the buffer level while the capture element is writing into DRAM and allows the encoder to read input buffer data if the requested data is already written by DMA, otherwise it blocks the encoder until DMA completes its writes. On the decoder side, the VCU decoder writes decoded video buffer data into DRAM in block-raster scan order and displays reads data in raster-scan order. To avoid display under-run problems, software ensures a phase difference of "~frame_period/2", so that decoder is ahead compare to display.
This design supports the following video interfaces:
Sources:
HDMI-Rx capture pipeline implemented in the PL.
Stream-In from network or internet.
Sinks:
HDMI-Tx display pipeline implemented in the PL.
VCU Codec:
Video Encode/Decode capability using VCU hard block in PL.
AVC/HEVC encoding
Encoder/decoder parameter configuration.
Video format:
XV20
Supported Resolution:
The table below provides the supported resolution from command line app only in this design.
Resolution | Command Line | |
Single Stream | Multi-stream | |
4kp60 | √ | NA |
4kp30 | √ | √ (Max 2) |
1080p60 | √ | √ (Max 4 for encoder) (Max 2 for decoder) |
√ - Supported
NA – Not applicable
x – Not supported
When using Low Latency mode (LLP1/LLP2), The encoder and decoder are limited by the number of internal cores. The encoder has maximum of four streams and the decoder has maximum of two streams.
The below table gives information about the features supported in this design.
Pipeline | Input source | Format | Output Type | Resolution | VCU codec |
---|---|---|---|---|---|
Serial pipeline | HDMI-Rx | XV20 | HDMI-Tx | 4kp60 / 4kp30 / 1080p60 | HEVC/AVC |
Stream-Out pipeline | HDMI-Rx | XV20 | Stream-Out | 4kp60 / 4kp30 / 1080p60 | HEVC/AVC |
Stream-in pipeline | Stream-In | XV20 | HDMI-Tx | 4kp60 / 4kp30 / 1080p60 | HEVC/AVC |
The below figure shows the Xilinx Low Latency PL DDR XV20 HDMI design hardware block diagram.
The below figure shows the Xilinx Low Latency PL DDR XV20 HDMI design software block diagram.
1.1 Board Setup
Refer below link for Board Setup
1.2 Run Flow
The TRD package is released with the source code, Vivado project, Petalinux BSP, and SD card image that enables the user to run the demonstration. It also includes the binaries necessary to configure and boot the ZCU106 board. Prior to running the steps mentioned in this wiki page, download the TRD package and extract its contents to a directory referred to as TRD_HOME
which is the home directory.
Refer Section 4.1 : Download the TRD of Zynq UltraScale+ MPSoC VCU TRD 2021.1
wiki page to download all TRD contents.
TRD package contents are placed in the following directory structure. The user needs to copy all the files from the $TRD_HOME/images/vcu_llp2_hdmi_xv20/
to FAT32 formatted SD card directory.
rdf0428-zcu106-vcu-trd-2021-1/
├── apu
│ └── vcu_petalinux_bsp
├── images
│ ├── vcu_10g
│ ├── vcu_audio
│ ├── vcu_llp2_hdmi_nv12
│ ├── vcu_llp2_hdmi_nv16
│ ├── vcu_llp2_hdmi_xv20
│ ├── vcu_llp2_sdi_xv20
│ ├── vcu_multistream_nv12
│ ├── vcu_pcie
│ ├── vcu_plddrv1_hdr10_hdmi
│ ├── vcu_plddrv2_hdr10_hdmi
│ └── vcu_sdi_xv20
├── pcie_host_package
│ ├── COPYING
│ ├── include
│ ├── LICENSE
│ ├── readme.txt
│ ├── RELEASE
│ ├── tests
│ ├── tools
│ └── xdma
├── pl
│ ├── constrs
│ ├── designs
│ ├── prebuild
│ ├── README.md
│ └── srcs
└── README.txt
└── zcu106_vcu_trd_sources_and_licenses.tar.gz
TRD package contents specific to VCU Xilinx Low Latency PL DDR XV20 HDMI design are placed in the following directory structure.
rdf0428-zcu106-vcu-trd-2021-1/
├── apu
│ └── vcu_petalinux_bsp
│ └── xilinx-vcu-zcu106-v2021.1-final.bsp
├── images
│ ├── vcu_llp2_hdmi_xv20
│ │ ├── autostart.sh
│ │ ├── BOOT.BIN
│ │ ├── boot.scr
│ │ ├── config
│ │ ├── Image
│ │ ├── rootfs.cpio.gz.u-boot
│ │ ├── system.dtb
│ │ └── vcu
├── pcie_host_package
├── pl
│ ├── constrs
│ ├── designs
│ │ ├── zcu106_llp2_xv20
│ ├── prebuild
│ │ ├── zcu106_llp2_xv20
│ ├── README.md
│ └── srcs
│ ├── hdl
│ └── ip
└── README.txt
└── zcu106_vcu_trd_sources_and_licenses.tar.gz
Configuration files(input.cfg) for various resolutions are placed in the following directory structure in /media/card
.
config
├── 1-4kp60
│ ├── Display
│ └── Stream-out
├── 2-1080p60
│ ├── Display
│ └── Stream-out
├── 2-4kp30
│ ├── Display
│ └── Stream-out
└── 4-1080p60
│ ├── Display
│ ├── Stream-in
│ └── Stream-out
└── input.cfg
1.2.1 GStreamer Application (vcu_gst_app)
The vcu_gst_app is a command line multi-threaded linux application. The command line application requires an input configuration file (input.cfg) to be provided in the plain text.
Run below modetest command to set CRTC configurations for 4kp60:
$ modetest -D a00c0000.v_mix -s 39:3840x2160-60@BG24
Run below modetest command to set CRTC configurations for 4kp30:
$ modetest -D a00c0000.v_mix -s 39:3840x2160-30@BG24
Execution of the application is shown below:
$ vcu_gst_app /media/card/config/< path to *.cfg file>
Example:
Make sure HDMI-Rx should be configured to 4kp60 mode, while running below example pipelines.
Low latency(LLP1/LLP2) stream-in pipelines are not supported in vcu_gst_app.
4kp60 XV20 HEVC_25Mbps ultra low-latency(LLP2) display pipeline execution.
$ vcu_gst_app /media/card/config/1-4kp60/Display/Single_4kp60_HEVC_25_Mbps.cfg
4kp60 XV20 HEVC_25Mbps ultra low-latency(LLP2) stream-out pipeline execution.
$ vcu_gst_app /media/card/config/1-4kp60/Stream-out/Single_4kp60_HEVC_25_Mbps.cfg
4kp60 XV20 HEVC ultra low-latency(LLP2) stream-in pipeline execution.
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, media=video, clock-rate=90000, payload=96, encoding-name=H265" ! rtpjitterbuffer latency=7 ! rtph265depay ! h265parse ! video/x-h265, alignment=nal ! omxh265dec low-latency=1 ! video/x-raw\(memory:XLNXLL\) ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink bus-id=a00c0000.v_mix" sync=true -v
For LLP1/LLP2 Multistream HEVC serial and stream-out use-cases (2-4kp30, 2-1080p60, 4-1080p60), use ENC_EXTRA_OP_BUFFERS=10
variable before vcu_gst_app command. Below is the sample pipeline:
$ ENC_EXTRA_OP_BUFFERS=10 vcu_gst_app /media/card/config/2-4kp30/Display/2_4kp30_HEVC_12_5_Mbps.cfg
The above macro is recommended to use for LLP1/LLP2 multi-stream HEVC use-cases only.
To measure the latency of the pipeline, run the below command. The latency data is huge, so dump it to a file.
$ GST_DEBUG="GST_TRACER:7" GST_TRACERS="latency" GST_DEBUG_FILE=/run/latency.log vcu_gst_app /media/card/config/< path to *.cfg file>
Refer below link for detailed run flow steps
1.3 Build Flow
Refer below link for detailed build flow steps
2 Other Information
2.1 Known Issues
For Petalinux related known issues please refer: PetaLinux 2021.1 - Product Update Release Notes and Known Issues
For VCU related known issues please refer AR# 76600: LogiCORE H.264/H.265 Video Codec Unit (VCU) - Release Notes and Known Issues and Xilinx Zynq UltraScale+ MPSoC Video Codec Unit.
To reduce performance issues with llp2 4x serial pipelines, please refer to chapter# 40 of Section VI: Appendices for IRQ Balancing scheme in PG252.
2.2 Limitations
For Petalinux related limitations please refer: PetaLinux 2021.1 - Product Update Release Notes and Known Issues
For VCU related limitations please refer AR# 76600: LogiCORE H.264/H.265 Video Codec Unit (VCU) - Release Notes and Known Issues , Xilinx Zynq UltraScale+ MPSoC Video Codec Unit and PG252.
2.3 Optimum VCU Encoder parameters for use-cases
Video streaming:
Video streaming use-case requires very stable bitrate graph for all pictures.
It is good to avoid periodic large Intra pictures during the encoding session
Low-latency rate control (hardware RC) is the preferred control-rate for video streaming, it tries to maintain equal amount frame sizes for all pictures.
Good to avoid periodic Intra frames instead use low-delay-p (IPPPPP…)
VBR is not a preferred mode of streaming.
Performance: AVC Encoder settings:
It is preferred to use 8 slices only for better AVC encoder performance.
AVC standard does not support Tile mode processing which results in the processing of MB rows sequentially for entropy coding.
Quality: Low bitrate AVC encoding:
Enable profile=high and use qp-mode=auto for low-bitrate encoding use-cases.
The high profile enables 8x8 transform which results in better video quality at low bitrates.
2.4 Max Bit-rate Benchmarking
The following tables summarize the maximum bit rate achievable for 3840x2610p60 resolution, XV20 pixel format at GStreamer level. The maximum supported target bit rate values vary based on what elements and type of input used in the pipeline.
Maximum Bit Rate support for LLP1/LLP2 Streaming Use case with 4kp60 resolution.
The table below provides Encoder/Decoder Maximum Bit Rate Tests with XV20 format (For Streaming).
Video Streaming ( Server: Live video capture → VCU encoder → Parser → rtppay → Stream-out ) (Client: Stream-in → rtpdepay → Decoder → Display ) | ||||||
Format | Codec | Rate Control Mode | Latency Mode | B-Frames = 0 | DDR Mode | Max Target Bitrate |
4:2:2, 10 bit | H.264 (AVC) | LOW_LATENCY | LLP1 | IPPP | Encoder (PS_DDR), Decoder (PL_DDR) | 25 Mb/s |
LLP2 | 25 Mb/s | |||||
H.265 (HEVC) | LLP1 | 25 Mb/s | ||||
LLP2 | 25 Mb/s |
Refer LLP1/LLP2 streaming pipelines from the Appendix-B for Max bitrate measurement.
Maximum Bit Rate support for LLP1/LLP2 Serial Use case with 4kp60 resolution.
The table below provides Encoder/Decoder Maximum Bit Rate Tests with XV20 format.
Serial ( Live video capture → VCU encoder → VCU decoder → Display ) | ||||||
Format | Codec | Rate Control Mode | Latency Mode | B-Frames = 0 | DDR Mode | Max Target Bitrate |
4:2:2, 10 bit | H.264 (AVC) | LOW_LATENCY | LLP1 | IPPP | Encoder (PS_DDR), Decoder (PL_DDR) | 25 Mb/s |
LLP2 | 25 Mb/s | |||||
H.265 (HEVC) | LLP1 | 25 Mb/s | ||||
LLP2 | 25 Mb/s |
Refer LLP1/LLP2 serial pipelines from the Appendix-B for Max bitrate measurement.
3 Appendix A - Input Configuration File (input.cfg)
The example configuration files are stored at /media/card/config/
folder.
Configuration Type | Configuration Name | Description | Available Options | Note |
---|---|---|---|---|
Common | Common configuration | It is the starting point of common configuration |
|
|
Number of Input |
| 1,2,3,4 |
| |
Output | Select the video interface. | HDMI |
| |
Out Type |
| display and stream |
| |
Display Rate | Pipeline frame rate | 30 or 60 FPS |
| |
Exit | It indicates to the application that the configuration is over |
|
| |
Input | Input Configuration | It is the starting point of the input configuration |
|
|
Input Numbers | Starting Nth input configuration | 1, 2, 3, 4 |
| |
Input Type | Input Type | HDMI |
| |
Raw | To tell the pipeline is processed or pass-through | FALSE | Raw use-case is not supported for both LLP2 and non-LLP2 use-case as mixer is not connected to PS DDR | |
Width | The width of the live source | 3840, 1920 |
| |
Height | The height of the live source | 2160,1080 |
| |
Format | The format of input data | XV20 |
| |
Enable LLP2 | To enable LLP2 configuration | TRUE, FALSE | Set Enable LLP2 equals to False for non-LLP2 use-case. | |
Exit | It indicates to the application that the configuration is over |
|
| |
Encoder | Encoder Configuration | It is the starting point of encoder configuration |
|
|
Encoder Number | Starting Nth encoder configuration | 1,2,3,4 |
| |
Encoder Name | Name of the encoder | AVC/HEVC |
| |
Profile | Name of the profile | high for AVC main for HEVC |
| |
Rate Control | Rate control options | Low_Latency |
| |
Filler Data | Filler Data NAL units for CBR rate control | False |
| |
QP | QP control mode used by the VCU encoder | Uniform, Auto |
| |
L2 Cache | Enable or Disable L2Cache buffer in encoding process | True, False |
| |
Latency Mode | Encoder latency mode | sub_frame |
| |
Low Bandwidth | If enabled, decrease the vertical search range used for P-frame motion estimation to reduce the bandwidth. | True, False |
| |
Gop Mode | Group of Pictures mode | Basic, low_delay_p, low_delay_b |
| |
Bitrate | Target bitrate in Kbps | 1-25000 |
| |
B Frames | Number of B-frames between two consecutive P-frames | 0 |
| |
Slice | The number of slices produced for each frame. Each slice contains one or more complete macroblock/CTU row(s). Slices are distributed over the frame as regularly as possible. If slice-size is defined as well more slices may be produced to fit the slice-size requirement. |
| The recommended slice for LLP2 use-case is 8. | |
GoP Length | The distance between two consecutive I frames | 1-1000 |
| |
GDR Mode | It specifies which Gradual Decoder Refresh(GDR) scheme should be used when gop-mode = low_delay_p | Horizontal/Vertical/Disabled | GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only | |
Entropy Mode | It specifies the entropy mode for H.264 (AVC) encoding process | CAVLC/CABAC/Default |
| |
Max Picture Size | It is used to curtail instantaneous peak in the bit-stream using this parameter. It works in CBR/VBR rate-control only. When it is enabled, max-picture-size value is calculated and set with 10% of AllowedPeakMargin. i.e. | TRUE/FALSE |
| |
Preset |
| Custom |
| |
Exit | It indicates to the application that the configuration is over |
|
| |
Streaming | Streaming Configuration | It is the starting point of streaming configuration |
|
|
Streaming Number | Starting Nth Streaming configuration | 1, 2, 3, 4 |
| |
Host IP | The host to send the packets to | 192.168.25.89 or Windows PC IP |
| |
Port | The port to send the packets to | 5004, 5008, 5012 and 5016 |
| |
Exit | It indicates to the application that the configuration is over |
|
| |
Trace | Trace Configuration | It is the starting point of trace configuration |
|
|
| FPS Info | To display fps info on the console | True, False |
|
| APM Info | To display APM counter number on the console | True, False |
|
|
| Pipeline Info | To display pipeline info on console. | True, False |
|
| Exit | It indicates to the application that the configuration is over. |
|
4 Appendix B - HDMI-Rx/Tx Link-up and GStreamer Commands
This section covers configuration of HDMI-Rx using media-ctl
utility and HDMI-Tx using modetest
utility, along with demonstrating HDMI-Rx/Tx link-up issues and steps to switch HDMI-Rx resolution. It also contains sample GStreamer Low-Latency XV20 and Xilinx’s Ultra Low-Latency XV20 Video pipelines for Display, Stream-In and Stream-Out use-cases.
HDMI source can be locked to any resolution. Run the below command for all media nodes to print media device topology where
mediaX
represents different media nodes. In the topology log, look for thev_hdmi_rx_ss
string to identify the HDMI input source media node.
$ media-ctl -p -d /dev/mediaX
To check the link status, resolution and video node of the HDMI input source, run below media-ctl command where
mediaX
indicates media node for the HDMI input source.
$ media-ctl -p -d /dev/mediaX
When HDMI source is connected to 4KP60 resolution, it shows:
root@zcu106_vcu_llp2_xv20:~# media-ctl -p -d /dev/media0 -----> media node for HDMI input source
Media controller API version 5.10.0
Media device information
------------------------
driver xilinx-video
model Xilinx Video Composite Device
serial
bus info
hw revision 0x0
driver version 5.10.0
Device topology
- entity 1: vcapaxis_broad_out1hdmi_input_a (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video0 ----> Video node for HDMI-RX source
pad0: Sink
<- "amba_pl@0:axis_broadcasterhdmi_":1 [ENABLED]
- entity 5: vcapaxis_broad_out1hdmi_input_a (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video1
pad0: Sink
<- "amba_pl@0:axis_broadcasterhdmi_":2 [ENABLED]
- entity 9: vcapaxis_broad_out1hdmi_input_a (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video2
pad0: Sink
<- "amba_pl@0:axis_broadcasterhdmi_":3 [ENABLED]
- entity 13: vcapaxis_broad_out1hdmi_input_a (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video3
pad0: Sink
<- "amba_pl@0:axis_broadcasterhdmi_":4 [ENABLED]
- entity 17: amba_pl@0:axis_broadcasterhdmi_ (5 pads, 5 links)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev0
pad0: Sink
[fmt:UYVY10_1X20/3840x2160 field:none]
<- "a0040000.v_proc_ss":1 [ENABLED]
pad1: Source
[fmt:UYVY10_1X20/3840x2160 field:none]
-> "vcapaxis_broad_out1hdmi_input_a":0 [ENABLED]
pad2: Source
[fmt:UYVY10_1X20/3840x2160 field:none]
-> "vcapaxis_broad_out1hdmi_input_a":0 [ENABLED]
pad3: Source
[fmt:UYVY10_1X20/3840x2160 field:none]
-> "vcapaxis_broad_out1hdmi_input_a":0 [ENABLED]
pad4: Source
[fmt:UYVY10_1X20/3840x2160 field:none]
-> "vcapaxis_broad_out1hdmi_input_a":0 [ENABLED]
- entity 23: a0040000.v_proc_ss (2 pads, 2 links)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev1
pad0: Sink
[fmt:RBG888_1X24/3840x2160 field:none]
<- "a0000000.v_hdmi_rx_ss":0 [ENABLED]
pad1: Source
[fmt:UYVY10_1X20/3840x2160 field:none]
-> "amba_pl@0:axis_broadcasterhdmi_":0 [ENABLED]
- entity 26: a0000000.v_hdmi_rx_ss (1 pad, 1 link)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev2
pad0: Source
[fmt:RBG888_1X24/3840x2160 field:none]
[dv.caps:BT.656/1120 min:0x0@25000000 max:4096x2160@297000000 stds:CEA-861,DMT,CVT,GTF caps:progressive,reduced-blanking,custom]
[dv.detect:BT.656/1120 3840x2160p60 (4400x2250) stds:CEA-861 flags:CE-video]
-> "a0040000.v_proc_ss":0 [ENABLED]
Check resolution and frame-rate of dv.detect
under v_hdmi_rx_ss
node.
When the HDMI source is not connected, it shows:
root@zcu106_vcu_llp2_xv20:~# media-ctl -p -d /dev/media3 -----> media node for HDMI input source
Media controller API version 5.10.0
Media device information
------------------------
driver xilinx-video
model Xilinx Video Composite Device
serial
bus info
hw revision 0x0
driver version 5.10.0
Device topology
- entity 1: vcapaxis_broad_out1hdmi_input_a (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video0
pad0: Sink
<- "amba_pl@0:axis_broadcasterhdmi_":1 [ENABLED]
- entity 5: vcapaxis_broad_out1hdmi_input_a (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video1
pad0: Sink
<- "amba_pl@0:axis_broadcasterhdmi_":2 [ENABLED]
- entity 9: vcapaxis_broad_out1hdmi_input_a (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video2
pad0: Sink
<- "amba_pl@0:axis_broadcasterhdmi_":3 [ENABLED]
- entity 13: vcapaxis_broad_out1hdmi_input_a (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video3
pad0: Sink
<- "amba_pl@0:axis_broadcasterhdmi_":4 [ENABLED]
- entity 17: amba_pl@0:axis_broadcasterhdmi_ (5 pads, 5 links)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev0
pad0: Sink
[fmt:UYVY10_1X20/3840x2160 field:none]
<- "a0040000.v_proc_ss":1 [ENABLED]
pad1: Source
[fmt:UYVY10_1X20/3840x2160 field:none]
-> "vcapaxis_broad_out1hdmi_input_a":0 [ENABLED]
pad2: Source
[fmt:UYVY10_1X20/3840x2160 field:none]
-> "vcapaxis_broad_out1hdmi_input_a":0 [ENABLED]
pad3: Source
[fmt:UYVY10_1X20/3840x2160 field:none]
-> "vcapaxis_broad_out1hdmi_input_a":0 [ENABLED]
pad4: Source
[fmt:UYVY10_1X20/3840x2160 field:none]
-> "vcapaxis_broad_out1hdmi_input_a":0 [ENABLED]
- entity 23: a0040000.v_proc_ss (2 pads, 2 links)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev1
pad0: Sink
[fmt:RBG888_1X24/3840x2160 field:none]
<- "a0000000.v_hdmi_rx_ss":0 [ENABLED]
pad1: Source
[fmt:UYVY10_1X20/3840x2160 field:none]
-> "amba_pl@0:axis_broadcasterhdmi_":0 [ENABLED]
- entity 26: a0000000.v_hdmi_rx_ss (1 pad, 1 link)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev2
pad0: Source
[fmt:RBG888_1X24/3840x2160 field:none]
[dv.caps:BT.656/1120 min:0x0@25000000 max:4096x2160@297000000 stds:CEA-861,DMT,CVT,GTF caps:progressive,reduced-blanking,custom]
[dv.query:no-link] ----> HDMI-RX Link up status
-> "a0040000.v_proc_ss":0 [ENABLED]
dv.query:no-link
under v_hdmi_rx_ss
node shows HDMI-Rx source is not connected or HDMI-Rx source is not active (Try waking up the device by pressing a key on remote).
Notes for gst-launch-1.0 commands:
Video node for HDMI-Rx source can be checked using
media-ctl
command. Run belowmedia-ctl
command to check video node for HDMI-Rx source wheremedia3
indicates media node for HDMI input source.
$ media-ctl -p -d /dev/media0
Make sure HDMI-Rx media pipeline is configured for 4kp60 resolution and source/sink have the same color format for connected nodes. For XV20 format, run below
media-ctl
commands to set resolution and format of HDMI scaler node, wheremedia0
indicates media node for HDMI input source.When HDMI Input Source is NVIDIA SHIELD
$ media-ctl -d /dev/media0 -V "\"a0040000.v_proc_ss\":0 [fmt:RBG888_1X24/3840x2160 field:none]"
$ media-ctl -d /dev/media0 -V "\"a0040000.v_proc_ss\":1 [fmt:UYVY10_1X20/3840x2160 field:none]"
Make sure NVIDIA SHIELD is configured for 4kp resolution and RBG888_1X24 format.
Follow the below steps to switch the HDMI-Rx resolution from 1080p60 to 4kp60.
Check current HDMI input source resolution (1080p60) by following the steps mentioned earlier to check HDMI resolution using
media-ctl
commandRun vcu_gst_app for current HDMI resolution (1080p60) by executing the following command.
$ vcu_gst_app /media/card/config/input.cfg
Below configurations needs to be set in input.cfg for non-LLP2 HDMI-1080p60 use-case.
Common Configuration : START
Num Of Input : 1
Output : HDMI
Out Type : Display
Frame Rate : 60
Exit
Input Configuration : START
Input Num : 1
Input Type : hdmi_1
Raw : FALSE
Width : 1920
Height : 1080
Format : XV20
Enable LLP2 : FALSE
Exit
Encoder Configuration : START
Encoder Num : 1
Encoder Name : HEVC
Profile : Main
Rate Control : Low_Latency
Filler Data : False
QP : Auto
L2 Cache : TRUE
Latency Mode : Sub_Frame
Low Bandwidth : FALSE
Gop Mode : Basic
Bitrate : 25000
B Frames : 0
Slice : 8
GoP Length : 60
GDR Mode : Horizontal
Preset : Custom
Exit
Change Resolution of HDMI Input Source from 1080p60 to 4kp60 by following below steps.
Set the HDMI source resolution to 4kp60 (Homepage → Settings → Display & Sound → Resolution → change to 4kp60).
Save the configuration to take place the change.
Verify the desired HDMI Input Source Resolution (4kp60) by following the above-mentioned steps.
If HDMI-Tx link-up issue is observed after Linux booting, use the following command to get the blue screen on HDMI-Tx for 4kp60.
$ modetest -D a00c0000.v_mix -s 39:3840x2160-60@BG24
The table below lists the parameters of the pixel format.
Pixel Format | GStreamer Format | Media Bus Format | GStreamer HEVC Profile | GStreamer AVC Profile | Kmssink Plane-id |
---|---|---|---|---|---|
XV20 | NV16_10LE32 | UYVY10_1X20 | main-422-10 | high-4:2:2 | 34 and 35 |
Video0
in the each gst-launch pipelines indicates a video node for the input source.Make sure HDMI-Rx should be configured to 4kp60 mode, while running below example pipelines.
LLP1/LLP2 stream-in pipelines are not supported using vcu_gst_app.
For LLP1/LLP2 Multi-stream HEVC serial and stream-out use-cases (2-4kp30, 2-1080p60, 4-1080p60), use
ENC_EXTRA_OP_BUFFERS=10
variable before gst-launch-1.0 command.For LLP1/LLP2 Multi-stream serial and stream-in use-cases (2-4kp30, 2-1080p60, 4-1080p60), use
internal-entropy-buffers=3
property in decoder.
Run the following gst-launch-1.0 command to display XV20 video on HDMI-Tx using low-latency (LLP1) GStreamer pipeline.
$ gst-launch-1.0 -v v4l2src io-mode=dmabuf device=/dev/video0 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc num-slices=8 control-rate=low-latency gop-mode=low-delay-p target-bitrate=25000 cpb-size=500 gdr-mode=horizontal initial-delay=250 periodicity-idr=240 filler-data=0 prefetch-buffer=true ! video/x-h265, alignment=nal ! queue max-size-buffers=0 ! omxh265dec low-latency=1 internal-entropy-buffers=5 ! video/x-raw ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink bus-id=a00c0000.v_mix hold-extra-sample=1 show-preroll-frame=false sync=true' sync=true -v
Run the following gst-launch-1.0 command to display XV20 video on HDMI-Tx using Xilinx's ultra low-latency(LLP2) GStreamer pipeline.
$ gst-launch-1.0 -v v4l2src io-mode=dmabuf device=/dev/video0 ! video/x-raw\(memory:XLNXLL\), width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc num-slices=8 control-rate=low-latency gop-mode=low-delay-p target-bitrate=25000 cpb-size=500 gdr-mode=horizontal initial-delay=250 periodicity-idr=240 filler-data=0 prefetch-buffer=true ! video/x-h265, alignment=nal ! queue max-size-buffers=0 ! omxh265dec low-latency=1 internal-entropy-buffers=5 ! video/x-raw\(memory:XLNXLL\) ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink bus-id=a00c0000.v_mix hold-extra-sample=1 show-preroll-frame=false sync=true' sync=true -v
Run the following gst-launch-1.0 command to stream-out XV20 video using low-latency(LLP1) GStreamer pipeline. where, 192.168.25.89 is host/client IP address and 5004 is a port number.
$ gst-launch-1.0 -v v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV16_10LE32, width=3840, height=2160, framerate=60/1 ! omxh265enc num-slices=8 periodicity-idr=240 cpb-size=500 gdr-mode=horizontal initial-delay=250 control-rate=low-latency prefetch-buffer=true target-bitrate=25000 gop-mode=low-delay-p ! video/x-h265, alignment=nal ! rtph265pay ! udpsink buffer-size=60000000 host=192.168.25.89 port=5004 async=false max-lateness=-1 qos-dscp=60 max-bitrate=120000000 -v
Run the following gst-launch-1.0 command to display stream-in XV20 video on HDMI-Tx using low-latency(LLP1) GStreamer pipeline. where, 5004 is a port number.
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, media=video, clock-rate=90000, payload=96, encoding-name=H265" ! rtpjitterbuffer latency=7 ! rtph265depay ! h265parse ! video/x-h265, alignment=nal ! omxh265dec low-latency=1 internal-entropy-buffers=5 ! video/x-raw ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink bus-id=a00c0000.v_mix" sync=true -v
Run the following gst-launch-1.0 command to stream-out XV20 video using Xilinx's ultra low-latency(LLP2) GStreamer pipeline. where, 192.168.25.89 is host/client IP address and 5004 is a port number.
$ gst-launch-1.0 -v v4l2src device=/dev/video0 io-mode=4 ! video/x-raw\(memory:XLNXLL\), format=NV16_10LE32, width=3840, height=2160, framerate=60/1 ! omxh265enc num-slices=8 periodicity-idr=240 cpb-size=500 gdr-mode=horizontal initial-delay=250 control-rate=low-latency prefetch-buffer=true target-bitrate=25000 gop-mode=low-delay-p ! video/x-h265, alignment=nal ! rtph265pay ! udpsink buffer-size=60000000 host=192.168.25.89 port=5004 async=false max-lateness=-1 qos-dscp=60 max-bitrate=120000000 -v
Run the following gst-launch-1.0 command to display stream-in XV20 video on HDMI-Tx using Xilinx's ultra low-latency(LLP2) GStreamer pipeline. where, 5004 is a port number.
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, media=video, clock-rate=90000, payload=96, encoding-name=H265" ! rtpjitterbuffer latency=7 ! rtph265depay ! h265parse ! video/x-h265, alignment=nal ! omxh265dec low-latency=1 internal-entropy-buffers=5 ! video/x-raw\(memory:XLNXLL\) ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink bus-id=a00c0000.v_mix" sync=true -v
Related content
© Copyright 2019 - 2022 Xilinx Inc. Privacy Policy