Zynq UltraScale+ MPSoC VCU TRD 2020.2 - PL DDR HLG SDI Video Capture and Display
This page provides all the information related to VCU TRD PL DDR HLG SDI design.
This is a beta release and will be included in the future TRD releases as an additional design module. Also note that this page stands alone and does not rely on the common VCU TRD “Build and Run Flow” page.
Table of Contents
1 Overview
This module enables the capture of the High Dynamic Range(HLG) video from an SDI-Rx subsystem implemented in the PL. The High Dynamic Range(HLG) video can be displayed through the SDI-Tx subsystem implemented in the PL. The module can stream-out and stream-in live captured video frames through an Ethernet interface. This module supports multi-stream for XV20 pixel format. In this design, PL_DDR is used for decoding and PS_DDR for encoding so that DDR bandwidth would be enough to support high bandwidth VCU applications requiring simultaneous encoder and decoder operations and transcoding at 4k@60 FPS.
This module supports the Encoding-Decoding and Transmission of High Dynamic Range(HLG) video along with backward compatible Standard Dynamic Range(SDR) for SDI. It provides the ability to encode a wide dynamic range, while still being compatible with the existing transmission standards in the standard dynamic range (SDR) region. This HLG format encodes the HDR and SDR information in single signal enabling HDR-compatible TVs to display an enhanced image. Unlike HDR it does not have any metadata, rather it will use the ATC(Alternative transfer characteristics) SEI(supplemental enhanced information) information in the VUI(video usability information) to add extra encoding details.
From VCU point of view, there are two "types" of HLG, which you can enable:
There is a HLG-SDR Backwards Compatible Mode, which uses the BT2020 value in the SPS VUI parameters instead of the HLG transfer characteristics. Then the VCU encoder will insert a 'Alternative Transfer Characteristics' (ATC) SEI with the HLG value. See below video frame snapshot captured in stream-eye:
Depending on version of stream-eye, you may not see SEI message correctly. But if you look at HEX viewer you will see ATC SEI in bit-stream.
0x93 - Payload Type (147 == ATC)
0x01 - Payload Size (1 byte)
0x12 - 18 (HLG EOTF value)
0x80 - payload bits ending
2. There is a HLG only mode. This directly uses the HLG value in the SPS VUI parameters. See below frame snapshot captured in stream-eye:
This design supports the following video interfaces:
Sources:
SDI-Rx capture pipeline implemented in the PL.
File source (SD card, USB storage, SATA hard disk).
Stream-In from network or internet.
Sinks:
SDI-Tx display pipeline implemented in the PL.
VCU Codec:
Video Encode/Decode capability using VCU hard block in PL
AVC/HEVC encoding.
Encoder/decoder parameter configuration.
Streaming Interfaces:
1G Ethernet PS GEM
Video format:
XV20
Supported Resolution
The table below provides the supported resolution from GUI and command-line app in this design.
Resolution | Command Line | |
Single Stream | Multi Stream | |
4Kp60 | √ | X |
4Kp30 | √ | X |
1080p60 | √ | X |
√ - Supported
x – Not supported
The below table gives information about the features supported in this design.
Pipeline | Input Source | Format | Output Type | Resolution | Video Codec |
---|---|---|---|---|---|
Record/Stream-Out pipeline | SDI-Rx | XV20 | File Sink/ Stream-Out | 4K/1080p | HEVC/AVC |
File/ Streaming Playback pipeline | File Source/ Stream-In | XV20 | SDI-Tx | 4K/1080p | HEVC/AVC |
Serial pipeline (Capture → Encode → Decode → Display) | SDI-Rx | XV20 | SDI-Tx | 4K/1080p | HEVC/AVC |
RAW pipeline (capture->display) | SDI-Rx | XV20 | SDI-Tx | 4K/1080p | N.A. |
The below figure shows the HLG SDI Video Capture and HLG SDI Display design hardware block diagram.
The below figure shows the HLG SDI Video Capture and HLG SDI Display design software block diagram.
2 Hardware and Software Tools
2.1 Hardware Tools
Required :
ZCU106 evaluation board (rev C/D/E/F/1.0) with power cable
Class-10 SD card
Micro USB to USB-A cable for UART connection
Linux host machine to access zcu106
Optional :
USB pen drive formatted with the FAT32 file system and hub
SATA drive formatted with the FAT32 file system, external power supply, and data cable
2.2 Software Tools
Required :
Linux host machine for all tool flow tutorials (see UG1144 for detailed OS requirements)
Petalinux Tools version 2020.2 (see UG1144 for installation instructions)
VIVADO Design suite version 2020.2
Git a distributed version control system
Serial terminal emulator e.g. teraterm
Compatibility :
The VCU HLG SDI design has been tested successfully with the following components.
Phabrix Qx 12G Analyzer/Generator
Phabrix Qx is advanced tool for analysis and monitoring SDI standards - It also supports HLG. We have validated HLG serial and decode-display pipelines with Pharbix Qx Box, and analyzed the output HLG data.
SDI Receiver - AJA HA5-12G HDMI to 12G SDI converter
SDI Transmitter - AJA HI5-12G 12G SDI to HDMI converter
BNC to Micro BNC (HD-BNC) fiber cables to connect Converters and ZCU106 Board
The AJA HLG converters are good tools to converts normal SDR data to HLG data(HI5-12G), we have validated HLG record pipelines with use of AJA converters, and tested the recorded files with Phabrix Qx Box.
2.3 Download, Installation, and Licensing
The Vivado Design Suite User Guide explains how to download and install the Vivado® Design Suite tools, which include the Vivado Integrated Design Environment (IDE), High-Level Synthesis tool, and System Generator for DSP. This guide also provides information about licensing and administering evaluation and full copies of Xilinx design tools and intellectual property (IP) products. The Vivado Design Suite can be downloaded from here.
LogiCORE IP Licensing
The following IP cores require a license to build the design.
To obtain the LogiCORE IP license, please visit the respective IP product page and get the license.
AR# 44029 - Licensing - LogiCORE IP Core licensing questions
Hardware Evaluation keys allow you to simulate and implement your design, run timing analysis and generate a time-limited bitstream to program a Xilinx FPGA. The core in the programmed device will function in hardware for anywhere from 2 to 8 hours, depending on the core.
3 Board Setup
The below section will provide the information on the ZCU106 board setup for running TRD.
Connect the Micro USB cable into the ZCU106 Board Micro USB port J83, and the other end into an open USB port on the host PC. This cable is used for UART over USB communication.
Insert the SD card with the images copied into the SD card slot J100. Please find here how to prepare the SD card for specific design.
Set the SW6 switches as shown in the below Figure. This configures the boot settings to boot from SD.
Connect 12V Power to the ZCU106 6-Pin Molex connector.
Connect one end of SDI BNC cable to HD-BNC connector (SDI-Rx, J68) on board and another end to SDI source/HDMI source with HLG supported HDMI to SDI Converter.
Connect one end of SDI BNC cable to HD-BNC connector (SDI-Tx, J10) on board and another end to SDI monitor/HDMI monitor with HLG supported SDI to HDMI Converter.
For a USB storage device, connect the USB hub along with the mouse. (Optional)
For SATA storage device, connect SATA data cable to SATA 3.0 port. (Optional).
Set up a terminal session between a PC COM port and the serial port on the evaluation board (See the Determine which COM to use to access the USB serial port on the ZCU106 board for more details)
Copy the HLG images into the SD card and insert the SD card on the board.
The below images will show how to connect interfaces on the ZCU106 board.
The above figure shows all the ZCU106 board connections.
The above figure shows all the ZCU106 board connector slots.
3.1 Determine which COM to use to access the USB serial port on the ZCU106 board
Make sure that the ZCU106 board is powered on and a micro USB cable is connected between the ZCU106 board and host PC. This ensures that the USB-to-serial bridge is enumerated by the PC host.
Open your computer's Control Panel by clicking on Start > Control Panel.
Note that the Start button is typically located in the lower-left corner of the screen. Occasionally, it is in the upper left corner.
Click Device Manager to open the Device Manager window. Note: You may be asked to confirm opening the Device Manager. If so, click YES.
Expand Ports (COM & LPT).
Locate the Silicon Labs Quad CP210x USB to UART Bridge: Interface 0 (COM#).
4. Note down the COM Port number for further steps.
5. Close the Device Manager by clicking the red X in the upper right corner of the window.
Launch any Terminal application like Tera term to view the serial messages
Launch Tera Term and open the COM the port that is associated with Silicon Labs Quad CP210x USB to UART Bridge: Interface 0 of the USB-to-serial bridge.
Set the COM port to 115200 Baud rate, 8 bit data, none parity, 1 stop bit.
Power ON the board which has an SD card. Switch ON SW1 to power the ZCU106 board.
It boots Linux on board and It takes about a minute for Linux to boot.
4 Download the TRD
Download the VCU TRD 2020.2 HLG release package here.
5 Run Flow
The TRD package is released with the source code, Vivado project, Petalinux BSP, and SD card image that enables the user to run the demonstration. It also includes the binaries necessary to configure and boot the ZCU106 board. Prior to running the steps mentioned in this wiki page, download the TRD package and extract its contents to a directory referred to as TRD_HOME
which is the home directory.
TRD package contents specific to VCU HLG SDI Video Capture and Display design are placed in the following directory structure. The user needs to copy all the files from the $TRD_HOME/images/vcu_hlg_sdi
to FAT32 formatted SD card directory.
rdf0616-zcu106-vcu-hlg-EA-2020-2
├── apu
│ └── vcu_petalinux_bsp
├── images
│ └── vcu_hlg_sdi
├── pl
│ ├── constrs
│ ├── designs
│ ├── prebuild
│ ├── README.md
│ └── srcs
└── README.txt
9 directories, 2 files
TRD package contents specific to VCU HLG SDI Video Capture and Display design are placed in the following directory structure.
rdf0616-zcu106-vcu-hlg-EA-2020-2
├── apu
│ └── vcu_petalinux_bsp
│ └── xilinx-vcu-zcu106-v2020.2-final.bsp
├── images
│ └── vcu_hlg_sdi
│ ├── autostart.sh
│ ├── BOOT.BIN
│ ├── boot.scr
│ ├── config
│ ├── image.ub
│ ├── system.dtb
│ └── vcu
├── pl
│ ├── constrs
│ ├── designs
│ │ └── zcu106_HLG_SDI
│ ├── prebuild
│ │ └── zcu106_HLG_SDI
│ ├── README.md
│ └── srcs
│ └── hdl
└── README.txt
14 directories, 8 files
Configuration files (input.cfg)
for various Resolutions are placed in the following directory structure in /media/card
.
config
├── 1080p60
│ ├── Display
│ ├── Record
│ ├── Stream-in
│ └── Stream-out
├── 4kp30
│ ├── Display
│ ├── Record
│ ├── Stream-in
│ └── Stream-out
└── 4kp60
│ ├── Display
│ ├── Record
│ ├── Stream-in
│ └── Stream-out
└── input.cfg
15 directories, 1 file
5.1 Prepare a SD-Card
The user needs to copy all the files from the
$TRD_HOME/images/vcu_hlg_sdi/
to FAT32 formatted SD card directory.Power on the board; make sure INIT_B, DONE and all power rail LEDs are lit green
After a successful boot, a shell prompt would appear as shown below.
root@zcu106_vcu_hlg_sdi:~#
Now proceed with command-line based GStreamer application (Subsequent Section 5.2)
The SD card file system is mounted at
/media/card
. Optional storage medium SATA and USB are mounted at/media/sata
and/media/usb
respectively.
5.2 GStreamer Application (vcu_gst_app)
The vcu_gst_app
is a command-line multi-threaded Linux application. The command-line application requires an input configuration file (input.cfg)
to be provided in the plain text.
Execution of the application is shown below:
$ vcu_gst_app <path to *.cfg file>
Example:
4kp60 HEVC_HIGH Display Pipeline execution
$ vcu_gst_app /media/card/config/4kp60/Display/Single_4kp60_HEVC_HIGH.cfg
4kp60 HEVC_HIGH Record Pipeline execution
$ vcu_gst_app /media/card/config/4kp60/Record/Single_4kp60_HEVC_HIGH.cfg
4kp60 HEVC_HIGH Stream-out Pipeline execution
$ vcu_gst_app /media/card/config/4kp60/Stream-out/Single_4kp60_HEVC_HIGH.cfg
4kp60 HEVC_HIGH Stream-in Pipeline execution
$ vcu_gst_app /media/card/config/4kp60/Stream-in/input.cfg
Make sure SDI-Rx should be configured to 4kp60 mode.
To measure the latency of the pipeline, run the below command. The latency data is huge, so dump it to a file.
$ GST_DEBUG="GST_TRACER:7" GST_TRACERS="latency" GST_DEBUG_FILE=/run/latency.log vcu_gst_app /media/card/config/4kp60/Display/Single_4kp60_HEVC_HIGH.cfg
5.3 QoS Configuration
Check the Read QoS, Write QoS, Read Commands Issuing Capability and Write Commands Issuing Capability configuration of HP ports that interface VCU with PS DDR.
For VCU traffic, the QoS should be set as Best Effort (BE) and outstanding transaction count for read/write commands should be set to maximum i.e. 0xF for all AXI HP ports.
The AXI-QoS{3:0] lines behavior define three types of following Traffic in Decimal format on the AXI Bus.
Traffic Class | Read QoS Value (default) | Write QoS Value (default) |
Best Effort (BE) | 0-3 | 0-7 |
Video (V) | 4-11 | 8-15 |
Low Latency (LL) | 12-15 | N/A |
Below is the reference QoS configuration script as per VCU recommendation.
#!/bin/bash
/sbin/devmem 0xfd360008 w 0x3 #RDQoS for S_AXI_HPC0_FPD
/sbin/devmem 0xfd370008 w 0x3 #RDQoS for S_AXI_HPC1_FPD
/sbin/devmem 0xfd380008 w 0x3 #RDQoS for S_AXI_HP0_FPD
/sbin/devmem 0xfd390008 w 0x3 #RDQoS for S_AXI_HP1_FPD
/sbin/devmem 0xfd3a0008 w 0x3 #RDQoS for S_AXI_HP2_FPD
/sbin/devmem 0xfd3b0008 w 0x3 #RDQoS for S_AXI_HP3_FPD
/sbin/devmem 0xfd36001c w 0x3 #WRQoS for S_AXI_HPC0_FPD
/sbin/devmem 0xfd37001c w 0x3 #WRQoS for S_AXI_HPC1_FPD
/sbin/devmem 0xfd38001c w 0x3 #WRQoS for S_AXI_HP0_FPD
/sbin/devmem 0xfd39001c w 0x3 #WRQoS for S_AXI_HP1_FPD
/sbin/devmem 0xfd3a001c w 0x3 #WRQoS for S_AXI_HP2_FPD
/sbin/devmem 0xfd3b001c w 0x3 #WRQoS for S_AXI_HP3_FPD
/sbin/devmem 0xfd360004 w 0xF #RDISSUE for S_AXI_HPC0_FPD
/sbin/devmem 0xfd370004 w 0xF #RDISSUE for S_AXI_HPC1_FPD
/sbin/devmem 0xfd380004 w 0xF #RDISSUE for S_AXI_HP0_FPD
/sbin/devmem 0xfd390004 w 0xF #RDISSUE for S_AXI_HP1_FPD
/sbin/devmem 0xfd3A0004 w 0xF #RDISSUE for S_AXI_HP2_FPD
/sbin/devmem 0xfd3B0004 w 0xF #RDISSUE for S_AXI_HP3_FPD
/sbin/devmem 0xfd360018 w 0xF #WRISSUE for S_AXI_HPC0_FPD
/sbin/devmem 0xfd370018 w 0xF #WRISSUE for S_AXI_HPC1_FPD
/sbin/devmem 0xfd380018 w 0xF #WRISSUE for S_AXI_HP0_FPD
/sbin/devmem 0xfd390018 w 0xF #WRISSUE for S_AXI_HP1_FPD
/sbin/devmem 0xfd3A0018 w 0xF #WRISSUE for S_AXI_HP2_FPD
/sbin/devmem 0xfd3B0018 w 0xF #WRISSUE for S_AXI_HP3_FPD
6 Build Flow
The following tutorials assume that the $TRD_HOME
environment variable is set as given below.
$ export TRD_HOME=</path/to/downloaded/zipfile>/rdf0616-zcu106-vcu-hlg-EA-2020-2 |
6.1 Hardware Design
$ vivado -source designs/zcu106_HLG_SDI/project.tcl
After executing the script, the Vivado IPI block design comes up as shown in the below figure.
Click on “Generate Bitstream”.
If the user gets any pop-up with “No implementation Results available”. Click “Yes”. Then, if any pop-up comes up with “Launch runs”, Click "OK”.
The design is implemented and a pop-up window comes up saying “Open Implemented Design”. Click "OK".
After opening the implemented design, the window looks as shown in the below figure.
The actual results might graphically look different than the image shown
The project.tcl has scripts to Export Hardware and generate the .xsa file.
Go to File > Export > Export Hardware
In the Export Hardware Platform window click Next.
In the next window, select Include bitstream and click Next.
The default XSA file name is <hardware design name_wrapper>. Choose the path where the XSA file has to be written.
By default, the XSA is created at $TRD_HOME/pl/build/<hardware design name>/<hardware design name.sdk>/<hardware design name_wrapper.xsa>
.
As an e.g the XSA is created at $TRD_HOME/pl/build/zcu106_trd/zcu106_trd.sdk/zcu106_HLG_SDI_wrapper.xsa
for VCU TRD hardware design .
Click Finish for the XSA file to be generated.
6.2 VCU PetaLinux BSP
This tutorial shows how to build the Linux image and boot image using the PetaLinux build tool.
PetaLinux Installation: Refer to the PetaLinux Tools Documentation UG1144 for installation.
Kernel and DT Documentation: Refer to the AR #75894 for Device Tree changes and Kernel patches required for ZCU106 VCU HLG BSP.
It is recommended to follow the build steps in sequence.
$ source <path/to/petalinux-installer>/tool/petalinux-v2020.2-final/settings.sh
$ echo $PETALINUX |
Post PetaLinux installation $PETALINUX
environment variable should be set
Create a PetaLinux project.
$ cd $TRD_HOME/apu/vcu_petalinux_bsp
$ petalinux-create -t project -s xilinx-vcu-zcu106-v2020.2-final.bsp |
Configure the PetaLinux project.
$ cd xilinx-vcu-zcu106-v2020.2-final
$ petalinux-config --get-hw-description=$TRD_HOME/pl/prebuild/zcu106_HLG_SDI/ |
Please note that, below config options are disabled in xilinx-vcu-zcu106-v2020.2-final/project-spec/configs/config
for VCU HLG BSP
CONFIG_SUBSYSTEM_FPGA_MANAGER : It adds overlay dtb nodes, and overlay dtb nodes are not used in VCU HLG; so it is disabled
CONFIG_SUBSYSTEM_REMOVE_PL_DTB : PL IPs are used in VCU HLG design, so keep it disabled to generate PL DTB nodes
If the Vivado project is modified, the user is expected to configure the bsp with the modified .xsa file and build. e.g.
$ petalinux-config --get-hw-description=$TRD_HOME/pl/build/zcu106_HLG_SDI/ |
Create a soft link of design dtsi file to
system-user.dtsi
using below command
$ cd project-spec/meta-user/recipes-bsp/device-tree/files/
$ ln -sf vcu_plddr_sdi.dtsi system-user.dtsi
$ cd ../../../../../ |
Build the PetaLinux project
$ petalinux-build |
Build SDK components to use it as sysroot for application development.
$ petalinux-build --sdk
$ petalinux-package --sysroot |
Create a boot image (BOOT.BIN) including FSBL, ATF, bitstream, and u-boot.
$ cd images/linux
$ petalinux-package --boot --fsbl zynqmp_fsbl.elf --u-boot u-boot.elf --pmufw pmufw.elf --fpga system.bit |
Copy the generated boot image and Linux image to the SD card directory.
$ cp BOOT.BIN image.ub boot.scr $TRD_HOME/images/vcu_hlg_sdi/ |
6.3 VCU GST APP
vcu_gst_app and supporting library will be built as a vcu-gst-app
recipe inside petalinux-project. Refer project-spec/meta-user/recipes-apps/vcu-gst-app
directory inside petalinux project for vcu-gst-app recipe. Source of vcu_apm_lib, vcu_video_lib, vcu_gst_lib and vcu_gst_app is provided as zip inside project-spec/meta-user/recipes-apps/vcu-gst-app/files/
directory. vcu_gst_app
will be built as part of petalinux project and the executable is placed in /usr/bin
location of rootfs. User can update the zip file if any source code modifications need to be and run following command to build vcu-gst-app
recipe.
$ petalinux-build -c vcu-gst-app |
7 Other Information
7.1 Known Issues
For Petalinux related known issues please refer: PetaLinux 2020.2 - Product Update Release Notes and Known Issues
For VCU related known issues please refer AR# 66763: LogiCORE H.264/H.265 Video Codec Unit (VCU) - Release Notes and Known Issues and Xilinx Zynq UltraScale+ MPSoC Video Codec Unit.
7.2 Limitations
For Petalinux related limitations please refer: PetaLinux 2020.2 - Product Update Release Notes and Known Issues
For VCU related limitations please refer AR# 66763: LogiCORE H.264/H.265 Video Codec Unit (VCU) - Release Notes and Known Issues , Xilinx Zynq UltraScale+ MPSoC Video Codec Unit and PG252
8 Appendix A - Input Configuration File (input.cfg)
The example configuration files are stored at /media/card/config/
folder.
Configuration Type | Configuration Name | Description | Available Options |
---|---|---|---|
Common
| Common Configuration | It is the starting point of common configuration |
|
Num of Input | Number of input | 1 | |
Output | Select the video interface. | SDI | |
Out Type | Type of output | display, record, stream | |
Display Rate | Pipeline frame rate | 30, 60 | |
Exit | It indicates to the application that the configuration is over |
| |
Input | Input Configuration | It is the starting point of the input configuration |
|
Input Num | Starting Nth input configuration | 1 | |
Input Type | Input source type | SDI, File, Stream | |
Uri | File path or Network URL. Applicable for file playback and Stream-in pipeline only. Supported file formats for playback are ts, mp4, and mkv. | file:///media/usb/abc.ts (for file path), udp://192.168.25.89:5004/ (for Network streaming, Here | |
Raw | To tell the pipeline is processed or pass-through | TRUE, FALSE | |
Width | The width of the live source | 3840,1920 | |
Height | The height of the live source | 2160, 1080 | |
Format | The format of input data | XV20 | |
Exit | It indicates to the application that the configuration is over |
| |
Encoder
| Encoder Configuration | It is the starting point of encoder configuration |
|
Encoder Num | Starting Nth encoder configuration | 1 | |
Encoder Name | Name of the encoder | AVC, HEVC | |
Profile | Name of the profile | baseline, main or high for AVC. Main for HEVC. | |
Rate Control | Rate control options | CBR, VBR, and low-latency. | |
Filler Data | Filler Data NAL units for CBR rate control | True, False | |
QP | QP control mode used by the VCU encoder | Uniform, Auto | |
L2 Cache | Enable or Disable L2Cache buffer in encoding process. | True, False | |
Latency Mode | Encoder latency mode. | normal, sub_frame | |
Low Bandwidth | If enabled, decrease the vertical search range used for P-frame motion estimation to reduce the bandwidth. | True, False | |
Gop Mode | Group of Pictures mode. | Basic, low_delay_p, low_delay_b | |
Bitrate | Target bitrate in Kbps | 1-60000 | |
B Frames | Number of B-frames between two consecutive P-frames | 0-4 | |
Slice | The number of slices produced for each frame. Each slice contains one or more complete macroblock/CTU row(s). Slices are distributed over the frame as regularly as possible. If slice-size is defined as well more slices may be produced to fit the slice-size requirement | 4 to 22 : 4Kp resolution with HEVC codec | |
GoP Length | The distance between two consecutive I frames | 1-1000 | |
GDR Mode | It specifies which Gradual Decoder Refresh(GDR) scheme should be used when GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only | Horizontal/Vertical/Disabled | |
Entropy Mode | It specifies the entropy mode for H.264 (AVC) encoding process | CAVLC/CABAC/Default | |
Max Picture Size | It is used to curtail instantaneous peak in the bit-stream using this parameter. It works in CBR/VBR rate-control only. When it is enabled, | TRUE/FALSE | |
HLG_SDR_Compatible | It specifies the whether vcu will use the HLG Only mode or Backward-Compatible-Mode. By default, vcu-gst-app will use HLG Only mode. | TRUE/FALSE | |
Preset | Encoder configuration Preset | HEVC_HIGH, HEVC_MEDIUM, HEVC_LOW, AVC_HIGH, AVC_MEDIUM, AVC_LOW, Custom | |
Exit | It indicates to the application that the configuration is over |
| |
Record | Record Configuration | It is the starting point of record configuration. |
|
Record Num | Starting Nth record configuration. | 1 | |
Out File Name | Record file path. | e.g. /media/usb/abc.ts | |
Duration | Duration in minutes. | 1-3 | |
Exit | It indicates to the application that the configuration is over. |
| |
Streaming | Streaming Configuration | It is the starting point of streaming configuration. |
|
Streaming Num | Starting Nth Streaming configuration | 1 | |
Host IP | The host to send the packets to | 192.168.25.89 or Windows PC IP | |
Port: | The port to send the packets to. | 5004 | |
Exit | It indicates to the application that the configuration is over. |
| |
Trace | Trace Configuration | It is the starting point of trace configuration. |
|
FPS Info | To display fps info on the console. | True, False | |
APM Info | To display APM counter number on the console. | True, False | |
Pipeline Info | To display pipeline info on console. | True, False | |
Exit | It indicates to the application that the configuration is over. |
|
9 Appendix B - SDI-Rx/Tx Link-up and GStreamer Commands
This section covers configuration of SDI-Rx using media-ctl
utility and SDI-Tx using modetest
utility, along with demonstrating SDI-Rx/Tx link-up issue and steps to switch resolution. It also contains sample GStreamer SDI XV20 pipelines for Display, Record, Stream-In and Stream-Out use-cases.
Run the below command to check the SDI link status, resolution, video node and output format of the SDI input source. Run the below command for all media nodes to print media device topology where media0
represents different media nodes. In the topology, log look for the v_smpte_uhdsdi_rx_ss
string to identify the SDI input source media node. The media-ctl
command generated as part of petalinux bsp will support all the vcu supported formats like NV12, NV16, XV15 and XV20.
$ media-ctl -p -d /dev/media0
Check resolution and frame-rate of of dv.detect
under v_smpte_uhdsdi_rx_ss
node.
When HLG SDI source is connected to 4Kp60 resolution, it shows as below:
root@zcu106_vcu_hlg_sdi:/media/card# media-ctl -p -d /dev/media0 -----> media node for SDI input source
Media controller API version 5.4.0
Media device information
------------------------
driver xilinx-video
model Xilinx Video Composite Device
serial
bus info
hw revision 0x0
driver version 5.4.0
Device topology
- entity 1: vcap_sdirxsdi_rx_input_v_smpte_ (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video0 -----> Video node for SDI input source
pad0: Sink
<- "a0030000.v_smpte_uhdsdi_rx_ss":0 [ENABLED]
- entity 5: a0030000.v_smpte_uhdsdi_rx_ss (1 pad, 1 link)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev0
pad0: Source
[fmt:UYVY10_1X20/3840x2160@1000/60000 field:none colorspace:bt2020 xfer:unknown ycbcr:bt2020 quantization:lim-range]
[dv.detect:BT.656/1120 3840x2160p60 (4400x2250) stds:CEA-861 flags:can-reduce-fps,CE-video,has-cea861-vic] ---> SDI-Rx link up
-> "vcap_sdirxsdi_rx_input_v_smpte_":0 [ENABLED]
xfer function is 'unknown' because upstream kernel does not support HLG enumeration. This will no affect functionality. This needs to be added by upstream and media-ctl application.
When the SDI source is not connected, it shows:
root@zcu106_vcu_hlg_sdi:/media/card# media-ctl -p -d /dev/media0 -----> media node for SDI input source
Media controller API version 5.4.0
Media device information
------------------------
driver xilinx-video
model Xilinx Video Composite Device
serial
bus info
hw revision 0x0
driver version 5.4.0
Device topology
- entity 1: vcap_sdirxsdi_rx_input_v_smpte_ (1 pad, 1 link)
type Node subtype V4L flags 0
device node name /dev/video0 -----> Video node for SDI input source
pad0: Sink
<- "a0030000.v_smpte_uhdsdi_rx_ss":0 [ENABLED]
- entity 5: a0030000.v_smpte_uhdsdi_rx_ss (1 pad, 1 link)
type V4L2 subdev subtype Unknown flags 0
device node name /dev/v4l-subdev0
pad0: Source
[dv.query:no-lock] -----> link is not detected
-> "vcap_sdirxsdi_rx_input_v_smpte_":0 [ENABLED]
Here dv.query:no-lock
under v_smpte_uhdsdi_rx_ss
node shows SDI-Rx source is not connected or SDI-Rx source is not active (Try waking up the device by pressing a key on remote).
Modetest commands:
Modetest command for 4Kp60 Display
$ modetest -M xlnx -s 35:3840x2160-60@XV20 -w 35:sdi_mode:5 -w 35:sdi_data_stream:8 -w 35:is_frac:0 -w 35:c_encoding=1
Modetest command for 4Kp30 Display
$ modetest -M xlnx -s 35:3840x2160-30@XV20 -w 35:sdi_mode:4 -w 35:sdi_data_stream:8 -w 35:is_frac:0 -w 35:c_encoding=1
Modetest command for 1080p60 Display
$ modetest -M xlnx -s 35:1920x1080-60@XV20 -w 35:sdi_mode:2 -w 35:sdi_data_stream:2 -w 35:is_frac:0 -w 35:c_encoding=1
Follow the below steps to switch the SDI-Rx resolution from 1080p60 to 4Kp60.
Check current SDI Input Source Resolution (1080p60) by following the above-mentioned steps.
Run
vcu_gst_app
for current SDI resolution (1080p60) by executing the following command.
$ vcu_gst_app /media/card/config/input.cfg
Below configurations needs to be set in input.cfg
for SDI-1080p60.
Common Configuration : START
Num Of Input : 1
Output : SDI
Out Type : Display
Frame Rate : 60
Exit
Input Configuration : START
Input Num : 1
Input Type : SDI
Raw : TRUE
Width : 1920
Height : 1080
Format : XV20
Exit
Change Resolution of SDI Input Source from 1080p60 to 4Kp60 by following the below steps.
Set the SDI source resolution to 4Kp60 (Home page → settings → display & Sound → Resolution → change to 4Kp60).
Save the configuration to take place the change.
Verify desired SDI Input Source Resolution (4Kp60) by following the above-mentioned steps.
The table below lists the parameters of the pixel format.
After booting you need to run the modetest command(mandatory) for respective resolution you want to validate.
Pixel Format | GStreamer Format | Media Bus Format | GStreamer HEVC Profile | GStreamer AVC Profile | Kmssink Plane-id |
---|---|---|---|---|---|
XV20 | NV16_10LE32 | UYVY10_1X20 | main-422-10 | high-4:2:2 | 32 |
All HLG GStreamer pipelines are only validated with Phabrix Qx 12G SDI Analyzer/Generator. It is a possibility that, HLG behavior might be different with actual setup containing HLG media source and display.
In record use-case, file location should be USB-3.0/SATA/RAMdisk to avoid the read-write bandwidth issue.
Video0
in the each below gst-launch pipelines indicates a video node for the input source.
Run the following
gst-launch-1.0
command to display raw HLG SDI video using the GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV16_10LE32, width=3840, height=2160, framerate=60/1 ! queue max-size-bytes=-1 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink driver-name=xlnx connector-properties="props,sdi_mode=5,sdi_data_stream=8,is_frac=0,c_encoding=1" show-preroll-frame=false hold-extra-sample=true async=false sync=false' -v
Run the following
gst-launch-1.0
command to display processed(capture → encode → decode → display) HLG Only SDI video using the GStreamer pipeline.
$ gst-launch-1.0 -v v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, framerate=60/1, format=NV16_10LE32 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, alignment=au ! queue max-size-bytes=0 ! omxh265dec ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink driver-name=xlnx connector-properties="props,sdi_mode=5,sdi_data_stream=8,is_frac=0,c_encoding=1" show-preroll-frame=false hold-extra-sample=true async=false sync=false' -v
Run the following
gst-launch-1.0
command to display processed(capture → encode → decode → display) HLG-SDR-Compatible SDI video using the GStreamer pipeline.
$ gst-launch-1.0 -v v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, framerate=60/1, format=NV16_10LE32 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 hlg-sdr-compatible=TRUE ! video/x-h265, alignment=au ! queue max-size-bytes=0 ! omxh265dec ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink driver-name=xlnx connector-properties="props,sdi_mode=5,sdi_data_stream=8,is_frac=0,c_encoding=1" show-preroll-frame=false hold-extra-sample=true async=false sync=false' -v
Run the following
gst-launch-1.0
command to record HLG Only SDI video using the GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 num-buffers=3600 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, alignment=au ! mpegtsmux alignment=7 name=mux ! filesink location="/run/test.ts"
Run the following
gst-launch-1.0
command to record HLG-SDR-Compatible SDI video using the GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 num-buffers=3600 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 hlg-sdr-compatible=TRUE ! video/x-h265, alignment=au ! mpegtsmux alignment=7 name=mux ! filesink location="/run/test.ts"
Run the following
gst-launch-1.0
command to play the recorded HLG Only / HLG-SDR-Compatible video file using the GStreamer pipeline.
$ gst-launch-1.0 uridecodebin uri="file:///run/test.ts" name=decode ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink driver-name=xlnx connector-properties="props,sdi_mode=5,sdi_data_stream=8,is_frac=0,c_encoding=1" show-preroll-frame=false hold-extra-sample=true async=false sync=false' -v
Run the following
gst-launch-1.0
command to capture, encode and stream-out HLG Only SDI video using the GStreamer pipeline, where 192.168.25.89 is host/client IP address and 5004 is port number.
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265, alignment=au ! h265parse ! queue ! mpegtsmux alignment=7 name=mux ! rtpmp2tpay ! udpsink host=192.168.25.89 port=5004 buffer-size=60000000 max-bitrate=120000000 max-lateness=-1 qos-dscp=60 async=false
Run the following
gst-launch-1.0
command to stream-in, decode and play HLG-Only SDI video using the GStreamer pipeline, where 5004 is port number.
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, clock-rate=90000" ! rtpjitterbuffer latency=1000 ! rtpmp2tdepay ! tsparse ! video/mpegts ! tsdemux name=demux ! queue ! h265parse ! video/x-h265, alignment=au ! omxh265dec ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink driver-name=xlnx connector-properties="props,sdi_mode=5,sdi_data_stream=8,is_frac=0,c_encoding=1" show-preroll-frame=false hold-extra-sample=true async=false sync=false' -v
Run the following
gst-launch-1.0
command to capture, encode and stream-out HLG-SDR-Compatible SDI video using the GStreamer pipeline, where 192.168.25.89 is host/client IP address and 5004 is port number.
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 hlg-sdr-compatible=TRUE ! video/x-h265, alignment=au ! h265parse ! queue ! mpegtsmux alignment=7 name=mux ! rtpmp2tpay ! udpsink host=192.168.25.89 port=5004 buffer-size=60000000 max-bitrate=120000000 max-lateness=-1 qos-dscp=60 async=false
Run the following
gst-launch-1.0
command to stream-in, decode and play HLG-SDR-Compatible SDI video using the GStreamer pipeline, where 5004 is port number.
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, clock-rate=90000" ! rtpjitterbuffer latency=1000 ! rtpmp2tdepay ! tsparse ! video/mpegts ! tsdemux name=demux ! queue ! h265parse ! video/x-h265, alignment=au ! omxh265dec ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink driver-name=xlnx connector-properties="props,sdi_mode=5,sdi_data_stream=8,is_frac=0,c_encoding=1" show-preroll-frame=false hold-extra-sample=true async=false sync=false' -v
Related content
© Copyright 2019 - 2022 Xilinx Inc. Privacy Policy