Zynq UltraScale+ MPSoC VCU TRD 2019.1 - Multi stream Audio-Video Design
This page provides all the information related to Design Module 3 - VCU TRD Multi stream Audio-Video design.
Table of Contents
1 Overview
The primary goal of this Design is to demonstrate the capabilities of VCU hard block present in Zynq UltraScale+ EV devices with soft audio codec. The TRD will serve as a platform to tune the performance parameters of VCU and arrive at optimal configurations for encoder and decoder blocks with audio-video synchronization.
This design supports the following video interfaces:
Sources:
- HDMI-Rx capture pipeline implemented in the PL.
- MIPI CSI-2 Rx capture pipeline implemented in the PL.
- File source (SD card, USB storage, SATA hard disk).
- Stream-In from network or internet.
Sinks:
- DP Tx display pipeline in the PS.
- HDMI-Tx display pipeline implemented in the PL.
VCU Codec:
- Video Encode/Decode capability using VCU hard block in PL
- AVC/HEVC encoding.
- Encoder/decoder parameter configuration.
Streaming Interfaces:
- 1G Ethernet PS GEM
Video format:
- NV12
Audio Configuration:
- Codec: AAC
- Format: S24_32LE
- Channel: 2
- Sampling rate: 48kHz
- Source: HDMI-Rx/ I2S-Rx
- Renderer: HDMI-Tx/ I2S-Tx/DP
Audio Deliverables:
Pipeline | Video Input source | Audio Input Source | Video Output Type | Audio Output Type | ALSA drivers | Resolution | Audio Codec Type | Audio Configuration | Video encode/Decoder type | Deliverables |
Record/Stream-Out pipeline | 1.HDMI-Rx | 1.HDMI-Rx 2.I2S-Rx | File-Sink Stream-Out | File-Sink Stream-Out | HDMI-Rx ALSA drivers | 4K/1080p | AAC | 2 channel @ 48 kHz | HEVC/AVC | HDMI Rx Audio encode with soft codec and video with VCU and store it in a container format. |
Playback pipeline | File Source/ Stream-In | File Source/ Stream-In | DP HDMI –Tx | 1.HDMI-Tx 2.I2S-Tx 3. DP | HDMI-Tx ALSA drivers | 4K/1080p | AAC | 2 channel @ 48 kHz | HEVC/AVC | Playback of the local-file/stream-in with video decoded using VCU and Audio using GStreamer soft codec. |
Capture--> Display | 1.HDMI-Rx | 1.HDMI-Rx 2.I2S-Rx | DP HDMI -Tx | 1.HDMI-Tx 2.I2S-Tx 3. DP | HDMI-Rx/Tx ALSA drivers | 4K/1080p | NA | 2 channel @ 48 kHz | HEVC/AVC | HDMI Rx Audio /Video pass to HDMI-Tx without VCU/Audio-Codec. |
Capture--> Encode--> Decode--> Display | 1.HDMI-Rx | 1.HDMI-Rx 2.I2S-Rx | DP HDMI -Tx | 1.HDMI-Tx 2.I2S-Tx 3. DP | HDMI-Rx/Tx ALSA drivers. | 4K/1080p | NA | 2 channel @ 48 kHz | HEVC/AVC | HDMI Rx raw audio and video with VCU encoder and decode to achieve AV sync. |
- Supports 1-4KP60 Single Stream with either HDMI-Rx/I2S Rx as input Audio source + HDMI-Rx/MIPI Rx as input Video source and HDMI-Tx/I2S Tx as Output Audio Sink +HDMI-Tx/DP as Output Video sink pipeline
- Supports 1-4KP30 Single Stream with either HDMI-Rx/I2S Rx as input Audio source + HDMI-Rx/MIPI Rx as input Video source and HDMI-Tx/I2S Tx as Output Audio Sink +HDMI-Tx/DP as Output Video sink pipeline
- Supports 1-1080P60 Single Stream with either HDMI-Rx/I2S Rx as input Audio source + HDMI-Rx/MIPI Rx as input Video source and HDMI-Tx/I2S Tx as Output Audio Sink +HDMI-Tx/DP as Output Video sink pipeline
- Supports 2-4KP30 multi-stream feature with HDMI-Rx and I2S Rx as input Audio source + HDMI-Rx and MIPI Rx as input Video source with HDMI-Tx and I2S Tx as Output Audio Sink +HDMI-Tx as Output Video sink pipeline
- Supports 2-1080p60 multi-stream feature with HDMI-Rx and I2S Rx as input Audio source + HDMI-Rx and MIPI Rx as input Video source with HDMI-Tx and I2S Tx as Output Audio Sink +HDMI-Tx as Output Video sink pipeline
Supported Resolution:
The table below provides the supported resolution from GUI and command line app in this design.
Resolution | GUI | Command Line | |
Single Stream | Single Stream | Multi-stream | |
4kp60 | X | √ | NA |
4kp30 | √ | √ | √(Max 2) |
1080p60 | √ | √ | √(Max 2) |
√ - Supported
NA – Not applicable
x – Not supported
The below sections describe the HDMI/MIPI Video Capture and HDMI Display with the Audio from HDMI/I2S design. It is VCU TRD design supporting HDMI-Rx audio/video +HDMI-Tx with Audio/video and MIPI-Rx video +I2S Rx audio with HDMI Tx video + I2S Tx audio. For the overview, software tools, system requirements, and design files follow the link below:
The below figure shows the HDMI, MIPI Video Capture along with HDMI, I2S Audio Capture and HDMI Display with Audio design hardware block diagram.
The below figure shows the HDMI, MIPI Video Capture along with HDMI, I2S Audio Capture and HDMI Display with Audio design software block diagram.
1.2 Run Flow
The TRD package is released with the source code, Vivado project, Petalinux BSP, and SD card image that enables the user to run the demonstration. It also includes the binaries necessary to configure and boot the ZCU106 board. Prior to running the steps mentioned in this wiki page, download the TRD package and extract its contents to a directory referred to as ‘TRD_HOME' which is the home directory.
Refer below link to download all TRD contents.
TRD package contents are placed in the following directory structure. The user needs to copy all the files from the $TRD_HOME/images/vcu_audio/ to FAT32 formatted SD card directory.
└── rdf0428-zcu106-vcu-trd-2019-1 ├── apu │ ├── apps │ ├── vcu_petalinux_bsp │ ├── vcu_sdx │ └── ws_bypass ├── host_x86 │ └── host_package ├── images │ ├── vcu_10g │ ├── vcu_audio │ ├── vcu_hdmirx │ ├── vcu_hdmitx │ ├── vcu_pcie │ ├── vcu_plddr_hdmi │ ├── vcu_sdirx │ ├── vcu_sdirxtx │ ├── vcu_sditx │ ├── vcu_sdx │ └── vcu_trd ├── pl │ ├── constrs │ ├── prebuilt │ ├── Readme.txt │ ├── scripts │ └── srcs └── README.txt
TRD package contents specific to Multistream Audio-Video design is placed in the following directory structure.
└── rdf0428-zcu106-vcu-trd-2019-1 ├── apu ├── apps ├── vcu_petalinux_bsp ├── vcu_sdx └── ws_bypass ├── documentation ├── images │ ├── vcu_audio │ │ ├── autostart.sh │ │ ├── bin │ │ ├── BOOT.BIN │ │ ├── config │ │ ├── image.ub │ │ ├── system.dtb │ │ └── vcu ├── pl │ ├── constrs │ ├── pre-built │ │ ├── vcu_audio │ ├── Readme.txt │ ├── scripts │ │ └── vcu_audio_proj.tcl │ └── srcs └── README.txt
configuration files(input.cfg) for various Resolutions are placed in the following directory structure in /media/card.
config ├── 1-4kp60 │ ├── Display │ ├── Record │ ├── Stream-in │ └── Stream-out ├── 2-1080p60 │ ├── Display │ ├── Record │ ├── Stream-in │ └── Stream-out └── 2-4kp30 ├── Display ├── Record ├── Stream-in └── Stream-out
1.2.1 GStreamer Application (vcu_gst_app)
The vcu_gst_app is a command line multi-threaded Linux application. The command line application requires an input configuration file (input.cfg) to be provided in the plain text.
Execution of the application is shown below:
% vcu_gst_app < path to *.cfg file>
Example:
4kp60 HEVC_HIGH Display Pipeline execution
% vcu_gst_app /media/card/config/Single_4kp60_HDMI_HDMI/Display/Single_HDMI_HDMI_4kp60_HEVC_HIGH.cfg
4kp60 HEVC_HIGH Record Pipeline execution
% vcu_gst_app /media/card/config/Single_4kp60_HDMI_HDMI/Record/Single_HDMI_HDMI_4kp60_HEVC_HIGH.cfg
4kp60 HEVC_HIGH Stream-out Pipeline execution
% vcu_gst_app /media/card/config/Single_4kp60_HDMI_HDMI/Stream-out/Single_HDMI_HDMI_4kp60_HEVC_HIGH.cfg
4kp60 HEVC_HIGH Stream-in Pipeline execution
% vcu_gst_app /media/card/config/Single_4kp60_HDMI_HDMI/Stream-in/Single_HDMI_HDMI_4kp60_HEVC_HIGH.cfg
NOTE: Make sure HDMI-Rx should be configured to 4kp60 mode.
To measure the latency of the pipeline, run the below command. The latency data is huge, so dump it to a file.
% GST_DEBUG="GST_TRACER:7" GST_TRACERS="latency;scheduletime" ./vcu_gst_app ./input.cfg >& dump_log.txt
Refer below link for detailed run flow steps
1.3 Build Flow
Refer below link for Build Flow
2 Other Information
2.1 Known Issues
- For VCU related known issues please refer AR# 72293: PetaLinux 2019.1 - Product Update Release Notes and Known Issues.
- Block Noise is observed in AVC_MEDIUM and AVC_LOW in 4kp60 pipelines.
- The digilent PMOD card cannot support the passive source like MICROPHONES. Only active sources are to be connected .Here source is from the Aux cable which is connected in between the source (laptop) and pmod card.
2.2 Limitations
- For playback in DP, video input resolution should match to DP's native resolution. This constraint is due to support of GUI. In GUI case if we allow video source other than native resolution(by setting fullscreen overlay) then graphics layer will disappear. To recover back GUI user need to kill and relaunch the GUI app. To avoid such condition TRD only supports video input resolution which is equal to DP's native resolution.
- For VCU related limitations please refer AR# 72293: PetaLinux 2019.1 - Product Update Release Notes and Known Issues and PG252 link.
2.3 Optimum VCU Encoder parameters for use-cases:
Video streaming:
- Video streaming use-case requires very stable bitrate graph for all pictures.
- It is good to avoid periodic large Intra pictures during the encoding session
- Low-latency rate control (hardware RC) is the preferred control-rate for video streaming, it tries to maintain equal amount frame sizes for all pictures.
- Good to avoid periodic Intra frames instead use low-delay-p (IPPPPP…)
- VBR is not a preferred mode of streaming.
Performance: AVC Encoder settings:
- It is preferred to use 8 or higher slices for better AVC encoder performance.
- AVC standard does not support Tile mode processing which results in the processing of MB rows sequentially for entropy coding.
Quality: Low bitrate AVC encoding:
- Enable profile=high and use qp-mode=auto for low-bitrate encoding use-cases.
- The high profile enables 8x8 transform which results in better video quality at low bitrates.
3 Appendix A - Input Configuration File (input.cfg)
The example configuration files are stored at /media/card/config/ folder.
Common Configuration:
It is the starting point of common configuration.
Num of Input:
Provide the number of input. this is 1 for single stream and 2 in case of Multistream
Output:
Select the video interface.
Options: HDMI or DP
Out Type:
Options: display, record, and stream
Display Rate:
Pipeline frame rate.
Options: 30 FPS or 60 FPS for each stream.
Exit:
It indicates to the application that the configuration is over.
Input Configuration:
It is the starting point of the input configuration.
Input Num:
Starting Nth input configuration.
Options: 1
Input Type:
Input source type.
Options: HDMI, File, Stream
Uri:
File path or Network URL. Applicable for file playback and stream-in pipeline only. Supported file formats for playback are ts and mkv.
Options: file:///media/usb/abc.ts (for file path), udp://192.168.25.89:5004/ (for Network streaming, Here 192.168.25.89 is IP address and 5004 is port no)
Raw:
To tell the pipeline is processed or pass-through.
Options: True, False
Width:
The width of the live source.
Options: 3840, 1920
Height:
The height of the live source.
Options: 2160, 1080
Exit:
It indicates to the application that the configuration is over.
Encoder Configuration:
It is the starting point of encoder configuration.
Encoder Num:
Starting Nth encoder configuration.
Options: 1
Encoder Name:
Name of the encoder.
Options: AVC, HEVC
Profile:
Name of the profile.
Options: baseline, main or high for AVC. Main for HEVC.
Rate Control:
Rate control options.
Options: CBR, VBR, and low-latency.
Filler Data:
Filler Data NAL units for CBR rate control.
Options: True, False
QP:
QP control mode used by the VCU encoder.
Options: Uniform, Auto
L2 Cache:
Enable or Disable L2Cache buffer in encoding process.
Options: True, False
Latency Mode:
Encoder latency mode.
Options: normal, sub_frame
Low Bandwidth:
If enabled, decrease the vertical search range used for P-frame motion estimation to reduce the bandwidth.
Options: True, False
Gop Mode:
Group of Pictures mode.
Options: Basic, low_delay_p, low_delay_b
Bitrate:
Target bitrate in Kbps
Options: 1-60000
B Frames:
Number of B-frames between two consecutive P-frames
Options: 0-4
Slice:
The number of slices produced for each frame. Each slice contains one or more complete macroblock/CTU row(s). Slices are distributed over the frame as regularly as possible. If slice-size is defined as well more slices may be produced to fit the slice-size requirement.
Options:
4-22 4kp resolution with HEVC codec
4-32 4kp resolution with AVC codec
4-32 1080p resolution with HEVC codec
4-32 1080p resolution with AVC codec
GoP Length:
The distance between two consecutive I frames
Options: 1-1000
Format:
The format of input data.
Options: NV12
Preset:
Options: HEVC_HIGH, HEVC_MEDIUM, HEVC_LOW, AVC_HIGH, AVC_MEDIUM, AVC_LOW, Custom
Exit
It indicates to the application that the configuration is over.
Record Configuration:
It is the starting point of record configuration.
Record Num:
Starting Nth record configuration.
Options: 1
Out-File Name:
Record file path.
Options: /media/usb/abc.ts
Duration:
Duration in minutes.
Options: 1-3
Exit
It indicates to the application that the configuration is over.
Streaming Configuration:
It is the starting point of streaming configuration.
Streaming Num:
Starting Nth Streaming configuration.
Options: 1.
Host IP:
The host to send the packets to
Options: 192.168.25.89 or Windows PC IP
Port:
The port to send the packets to
Options: 5004,5008,5012 and 5016.
Exit
It indicates to the application that the configuration is over.
It is the starting point of the audio configuration.
The format of the audio.
Options: S24_32LE.
Options: 48000.
The number of audio channels.
Options: 2.
To set the volume level. The default value is 2.0.
Options: 0.0-10.0.
It indicates to the application that the configuration is over.
It is the starting point of trace configuration.
FPS Info:
To display fps info on the console.
Options: True, False
APM Info:
To display APM counter number on the console.
Options: True, False
Pipeline Info:
To display pipeline info on console.
Options: True, False
Exit
It indicates to the application that the configuration is over.
4 Appendix B
- Kill the Qt GUI application running on target board by executing the below commands from the serial console.
$ killall -9 run_vcu.sh $ killall -9 vcu_qt $ killall -9 Xorg
- HDMI source can be locked to any resolution. Run the below command for all media nodes to print media device topology where "mediaX" represents different media nodes. In the topology, log look for the “v_hdmi_rx_ss” string to identify the HDMI input source media node.
$ xmedia-ctl -p -d /dev/mediaX
When HDMI source is connected to 1080P60 resolution, it shows:
root@zcu106_vcu_trd:/media/card# xmedia-ctl -d /dev/media1 -p Media controller API version 4.19.0 Media device information ------------------------ driver xilinx-video model Xilinx Video Composite Device serial bus info hw revision 0x0 driver version 4.19.0 Device topology - entity 1: vcap_hdmi output 0 (1 pad, 1 link) type Node subtype V4L flags 0 device node name /dev/video0 pad0: Sink <- "a0080000.v_proc_ss":1 [ENABLED] - entity 5: a0080000.v_proc_ss (2 pads, 2 links) type V4L2 subdev subtype Unknown flags 0 device node name /dev/v4l-subdev6 pad0: Sink [fmt:Y8_1X8/1280x720 field:none colorspace:srgb] <- "a0000000.v_hdmi_rx_ss":0 [ENABLED] pad1: Source [fmt:Y8_1X8/1920x1080 field:none colorspace:srgb] -> "vcap_hdmi output 0":0 [ENABLED] - entity 8: a0000000.v_hdmi_rx_ss (1 pad, 1 link) type V4L2 subdev subtype Unknown flags 0 device node name /dev/v4l-subdev7 pad0: Source [fmt:VUY8_1X24/1920x1080 field:none colorspace:rec709] [dv.caps:BT.656/1120 min:0x0@25000000 max:4096x2160@297000000 stds:CEA-861,DMT,CVT,GTF caps:progressive,reduced-blanking,custom] [dv.detect:BT.656/1120 1920x1080p60 (2200x1125) stds:CEA-861 flags:CE-video] -> "a0080000.v_proc_ss":0 [ENABLED]
NOTE: Check resolution and frame-rate of "dv.detect" under "v_hdmi_rx_ss" node.
When the HDMI source is not connected, it shows:
root@zcu106_vcu_trd:/media/card# xmedia-ctl -d /dev/media1 -p Media controller API version 4.19.0 Media device information ------------------------ driver xilinx-video model Xilinx Video Composite Device serial bus info hw revision 0x0 driver version 4.19.0 Device topology - entity 1: vcap_hdmi output 0 (1 pad, 1 link) type Node subtype V4L flags 0 device node name /dev/video0 pad0: Sink <- "a0080000.v_proc_ss":1 [ENABLED] - entity 5: a0080000.v_proc_ss (2 pads, 2 links) type V4L2 subdev subtype Unknown flags 0 device node name /dev/v4l-subdev6 pad0: Sink [fmt:Y8_1X8/1280x720 field:none colorspace:srgb] <- "a0000000.v_hdmi_rx_ss":0 [ENABLED] pad1: Source [fmt:Y8_1X8/1920x1080 field:none colorspace:srgb] -> "vcap_hdmi output 0":0 [ENABLED] - entity 8: a0000000.v_hdmi_rx_ss (1 pad, 1 link) type V4L2 subdev subtype Unknown flags 0 device node name /dev/v4l-subdev7 pad0: Source [fmt:RBG888_1X24/1280x720 field:none colorspace:srgb] [dv.caps:BT.656/1120 min:0x0@25000000 max:4096x2160@297000000 stds:CEA-861,DMT,CVT,GTF caps:progressive,reduced-blanking,custom] [dv.query:no-link] -> "a0080000.v_proc_ss":0 [ENABLED]
NOTE: Here "dv.query:no-link" under "v_hdmi_rx_ss" node shows HDMI-Rx source is not connected or HDMI-Rx source is not active(Try waking up the device by pressing a key on remote).
- Follow the below steps to switch the HDMI-Rx resolution from 1080p60 to 4kp60.
- Check current HDMI Input Source Resolution (1080p60) by following the above-mentioned steps.
- Run vcu_gst_app for current HDMI resolution (1080p60) by executing the following command.
$ vcu_gst_app /media/card/config/input.cfg
Below configurations needs to be set in input.cfg for HDMI-1080p60.
Common Configuration : START Num Of Input : 1 Output : HDMI Out Type : Display Frame Rate : 60 Exit Input Configuration : START Input Num : 1 Input Type : hdmi Raw : TRUE Width : 1920 Height : 1080 Exit
- Change Resolution of HDMI Input Source from 1080p60 to 4kp60 by following below steps.
- Set the HDMI source resolution to 4kp60 (Home page → settings → display & Sound → Resolution → change to 4kp60).
- Save the configuration to take place the change.
- Verify the desired HDMI Input Source Resolution (4kp60) by following the above-mentioned steps.
- Change Resolution of HDMI Input Source from 1080p60 to 4kp60 by following below steps.
- If HDMI Tx link-up issue is observed after Linux booting, use the following command:
$ modetest -D a0070000.v_mix -s 40:3840x2160-60@AR24 -w 36:"alpha":0
- Run the following gst-launch-1.0 command to capture and play raw HDMI video and Audio using GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, framerate=60/1, format=NV12 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" alsasrc device=hw:2,1 ! queue ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! alsasink device="hw:2,0"
- Run the following gst-launch-1.0 command to capture and play processed(capture → encode → decode → display) HDMI video and raw HDMI Audio using GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, framerate=60/1, format=NV12 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true latency-mode=normal ! video/x-h265, profile=main ! h265parse ! omxh265dec internal-entropy-buffers=5 latency-mode=normal ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" alsasrc device=hw:2,1 ! queue ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! alsasink device="hw:2,0"
- Run the following gst-launch-1.0 command to record HDMI video and audio using GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 num-buffers=3600 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true latency-mode=normal ! h265parse ! mux. alsasrc device=hw:2,1 num-buffers=3600 ! audio/x-raw, format=S24_32LE, rate=48000, channels=2 ! queue max-size-buffers=0 max-size-time=0 ! audioconvert ! faac ! aacparse ! queue max-size-bytes=0 ! mpegtsmux name=mux ! filesink location = "/media/usb/test.ts"
NOTE: File location should be USB-3.0 to avoid the read-write bandwidth issue.
- Run the following gst-launch-1.0 command to play the recorded file using the GStreamer pipeline.
$ gst-launch-1.0 uridecodebin uri="file:///media/usb/test.ts" name=decode ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" decode. ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channnels=2, format=S24_32LE ! alsasink device="hw:2,0"
NOTE: File location should be USB-3.0 to avoid the read-write bandwidth issue.
- Run the following gst-launch-1.0 command to stream-out HDMI video and audio using GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true latency-mode=normal ! h265parse ! mux. alsasrc device=hw:2,1 ! audio/x-raw, format=S24_32LE, rate=48000, channels=2 ! queue max-size-buffers=0 max-size-time=0 ! audioconvert ! faac ! aacparse ! queue max-size-bytes=0 ! mpegtsmux name=mux ! rtpmp2tpay ! udpsink host=192.168.25.89 port=5004
NOTE: Here 192.168.25.89 is host/client IP address and 5004 is port no.
- Run the following gst-launch-1.0 command to play stream-in video and audio using Gstreamer pipeline where 5004 is port no.
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, clock-rate=90000" ! rtpjitterbuffer latency=1000 ! rtpmp2tdepay ! tsparse ! video/mpegts ! tsdemux name=demux demux. ! queue ! h265parse ! omxh265dec internal-entropy-buffers=5 latency-mode=normal ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" demux. ! queue max-size-bytes=0 max-size-time=0 max-size-buffers=0 ! aacparse ! faad ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channnels=2, format=S24_32LE ! alsasink device="hw:2,0"
Note: Low latency stream-in pipeline cannot be launched with vcu-gst-app. Hence use below gst-launch pipelines :
- Run the following gst-launch-1.0 command for low-latency stream-out pipeline. Where "videoX" indicates a video node for the input source. Below pipeline is when audio input source is HDMI.[hw:2,1]
$ gst-launch-1.0 v4l2src device=/dev/videoX io-mode=4 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=low-latency prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265, profile=main, alignment=nal ! queue max-size-bytes=0 ! mux. alsasrc device=hw:2,1 ! audio/x-raw, format=S24_32LE, rate=48000, channels=2 ! queue max-size-buffers=0 max-size-time=0 ! audioconvert ! faac ! aacparse ! queue max-size-bytes=0 ! mpegtsmux name=mux ! rtpmp2tpay ! udpsink host=192.168.25.89 port=5004
NOTE:Here 192.168.25.89 is host/client IP address and 5004 is port no.
- Run the following gst-launch-1.0 command to display low-latency stream-in on HDMI-Tx video using Gstreamer pipeline where 5004 is port no.Below pipeline is when audio sink is HDMI.[hw:2,0]
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, clock-rate=90000" ! rtpjitterbuffer latency=1000 ! rtpmp2tdepay ! tsparse ! video/mpegts ! tsdemux name=demux demux. ! queue ! h265parse ! video/x-h265, profile=main, alignment=nal ! omxh265dec internal-entropy-buffers=5 low-latency=1 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" demux. ! queue max-size-bytes=0 max-size-time=0 max-size-buffers=0 ! aacparse ! faad ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channnels=2, format=S24_32LE ! alsasink device="hw:2,0"
GST LAUNCH COMMANDS FOR MIPI video, I2S Audio:
- Run the following gst-launch-1.0 command to capture and play raw MIPI video and I2S Audio using GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video1 io-mode=4 ! video/x-raw, width=3840, height=2160, framerate=60/1, format=NV12 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" alsasrc device=hw:0,1 ! queue ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! alsasink device="hw:0,0"
- Run the following gst-launch-1.0 command to capture and play processed(capture → encode → decode → display) MIPI video and raw I2S Audio using GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video1 io-mode=4 ! video/x-raw, width=3840, height=2160, framerate=60/1, format=NV12 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true latency-mode=normal ! video/x-h265, profile=main ! h265parse ! omxh265dec internal-entropy-buffers=5 latency-mode=normal ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" alsasrc device=hw:0,1 ! queue ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! alsasink device="hw:0,0"
- Run the following gst-launch-1.0 command to record MIPI video and I2S audio using GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video1 io-mode=4 num-buffers=3600 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true latency-mode=normal ! h265parse ! mux. alsasrc device=hw:0,1 num-buffers=3600 ! audio/x-raw, format=S24_32LE, rate=48000, channels=2 ! queue max-size-buffers=0 max-size-time=0 ! audioconvert ! faac ! aacparse ! queue max-size-bytes=0 ! mpegtsmux name=mux ! filesink location = "/media/usb/test.ts"
NOTE: File location should be USB-3.0 to avoid the read-write bandwidth issue.
- Run the following gst-launch-1.0 command to play the recorded file using the GStreamer pipeline.
$ gst-launch-1.0 uridecodebin uri="file:///media/usb/test.ts" name=decode ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" decode. ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channnels=2, format=S24_32LE ! alsasink device="hw:0,0"
NOTE: File location should be USB-3.0 to avoid the read-write bandwidth issue.
- Run the following gst-launch-1.0 command to stream-out MIPI video and I2S audio using GStreamer pipeline.
$ gst-launch-1.0 v4l2src device=/dev/video1 io-mode=4 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true latency-mode=normal ! h265parse ! mux. alsasrc device=hw:0,1 ! audio/x-raw, format=S24_32LE, rate=48000, channels=2 ! queue max-size-buffers=0 max-size-time=0 ! audioconvert ! faac ! aacparse ! queue max-size-bytes=0 ! mpegtsmux name=mux ! rtpmp2tpay ! udpsink host=192.168.25.89 port=5004
NOTE: Here 192.168.25.89 is host/client IP address and 5004 is port no.
- Run the following gst-launch-1.0 command to play stream-in video and audio using Gstreamer pipeline where 5004 is port no.
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, clock-rate=90000" ! rtpjitterbuffer latency=1000 ! rtpmp2tdepay ! tsparse ! video/mpegts ! tsdemux name=demux demux. ! queue ! h265parse ! omxh265dec internal-entropy-buffers=5 latency-mode=normal ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" demux. ! queue max-size-bytes=0 max-size-time=0 max-size-buffers=0 ! aacparse ! faad ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channnels=2, format=S24_32LE ! alsasink device="hw:0,0"
Note: Low latency stream-in pipeline cannot be launched with vcu-gst-app. Hence use below gst-launch pipelines :
- Run the following gst-launch-1.0 command for low-latency stream-out pipeline. Where "videoX" indicates a video node for the input source. Below pipeline is when audio input source is I2s.[hw:0,1]
$ gst-launch-1.0 v4l2src device=/dev/videoX io-mode=4 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=low-latency prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265, profile=main, alignment=nal ! queue max-size-bytes=0 ! mux. alsasrc device=hw:0,1 ! audio/x-raw, format=S24_32LE, rate=48000, channels=2 ! queue max-size-buffers=0 max-size-time=0 ! audioconvert ! faac ! aacparse ! queue max-size-bytes=0 ! mpegtsmux name=mux ! rtpmp2tpay ! udpsink host=192.168.25.89 port=5004
NOTE:Here 192.168.25.89 is host/client IP address and 5004 is port no.
- Run the following gst-launch-1.0 command to display low-latency stream-in on HDMI-Tx video using Gstreamer pipeline where 5004 is port no.Below pipeline is when audio sink is I2s.[hw:0,0]
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, clock-rate=90000" ! rtpjitterbuffer latency=1000 ! rtpmp2tdepay ! tsparse ! video/mpegts ! tsdemux name=demux demux. ! queue ! h265parse ! video/x-h265, profile=main, alignment=nal ! omxh265dec internal-entropy-buffers=5 low-latency=1 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" demux. ! queue max-size-bytes=0 max-size-time=0 max-size-buffers=0 ! aacparse ! faad ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channnels=2, format=S24_32LE ! alsasink device="hw:0,0"
Notes for gst-launch-1.0 commands:
- Make sure HDMI-Rx media pipeline is configured for 4kp60 resolution and source/sink have the same colour format. Run below xmedia-ctl commands to set resolution and format of HDMI scaler node.
When HDMI Input Source is NVIDIA SHIELD
$ xmedia-ctl -d /dev/media1 -V "\"a0080000.v_proc_ss\":0 [fmt:RBG888_1X24/3840x2160 field:none]" $ xmedia-ctl -d /dev/media1 -V "\"a0080000.v_proc_ss\":1 [fmt:VYYUYY8_1X24/3840x2160 field:none]"
NOTE: Make sure NVIDIA SHIELD is configured for 4kp resolution and RGB888 colour format.
When HDMI Input Source is ABOX
$ xmedia-ctl -d /dev/media1 -V "\"a0080000.v_proc_ss\":0 [fmt:VYYUYY8_1X24/3840x2160 field:none]" $ xmedia-ctl -d /dev/media1 -V "\"a0080000.v_proc_ss\":1 [fmt:VYYUYY8_1X24/3840x2160 field:none]"
NOTE: Make sure ABOX is configured for 4kp resolution and VYYUYY8 colour format.
© Copyright 2019 - 2022 Xilinx Inc. Privacy Policy