This page provides detailed information regarding DDR configuration and setting up IBIS simulations for the UltraScale and UltraScale+ family of FPGAs and MPSoCs.

Table of Contents

Introduction

Xilinx has determined through extensive simulation and characterization, the FPGA and DRAM configuration settings including Drive Strength, ODT, and Vref.  These values are used when the IP is generated.  This information is captured in the sections below.  The Custom IBIS models capture this information and can be used for board-level simulation.

This guide provides the following details and guidance

FPGA and MPSoC Supported DRAM

The UltraScale and UltraScale+ families of FPGAs and MPSoCs support several different DRAM technologies and configurations.  This chapter provides an overview of the supported DRAMs and configurations.       

Supported DRAM technologies

Supported DRAM configurations

Table 1: Supported PL DRAM Configurations

Configuration

DDR3/3L

DDR4

Component, 1 rank

x4, x8, x16

x4, x8, x16

Component, 2 rank

x4, x8, x16

x4, x8, x16

1 slot, 1 rank

RDIMM, UDIMM, SODIMM

RDIMM, UDIMM, SODIMM, LRDIMM

1 slot, 2 rank

RDIMM, UDIMM, SODIMM

RDIMM, UDIMM, SODIMM, LRDIMM

1 slot, 4 rank

RDIMM

LRDIMM

2 slot, 1 rank

RDIMM, UDIMM, SODIMM

RDIMM, UDIMM, SODIMM, LRDIMM

2 slot, 2 rank

RDIMM, UDIMM, SODIMM

RDIMM, UDIMM, SODIMM, LRDIMM

2 slot, 4 rank

LRDIMM (UltraScale+ Only)

Configuration

LPDDR3

1 rank, Component DRAM

x16, x32

 Table 2: Supported PS DRAM Configurations

Configuration

DDR3/3L

DDR4

Component, 1 rank

x8, x16

x8, x16

Component, 2 rank

x8, x16

x8, x16

1 slot, 1 rank

RDIMM, UDIMM, SODIMM

RDIMM, UDIMM, SODIMM

1 slot, 2 rank

RDIMM, UDIMM, SODIMM

RDIMM, UDIMM, SODIMM

1 slot, 4 rank

RDIMM, UDIMM, SODIMM

RDIMM, UDIMM, SODIMM

2 slot, 1 rank

RDIMM, UDIMM, SODIMM

RDIMM, UDIMM, SODIMM

2 slot, 2 rank

RDIMM, UDIMM, SODIMM

RDIMM, UDIMM, SODIMM

2 slot, 4 rank

RDIMM, UDIMM, SODIMM

RDIMM, UDIMM, SODIMM

Configuration

LPDDR3

LPDDR4

Component, 1 rank

x32 or x64, ECC Option

x16 or x32, ECC Option

Component, 2 rank

x32 or x64, ECC Option

x16 or x32, ECC Option

PL DRAM IP Drive Strength, ODT, and VREF Configuration

The PL DRAM IP has been characterized and tested to identify the optimal drive strength, ODT, and VREF settings.  This chapter provides the values that will always be used for the PL DRAM IP UltraScale and UltraScale+ DDR3 and DDR4 DRAM interfaces.  The Memory Controller supports the following calibration routines.  For more details on these routines, please see PG150.

UltraScale PL DDR4

Table 3: PL DDR4 FPGA drive strength & ODT configurations

UltraScale PL DDR4

FPGA Driver Strength, Ohm

FPGA ODT, Ohm

Component, 1 or 2 rank

40

40

1 slot, 1 rank

40

40

2 slot, 1 rank

40

40

1 slot, 2 rank

40

40

2 slot, 2 rank

40

60

1 slot, 4 rank

40

40

 Table 4: PL DDR4 DRAM drive strength and ODT configurations

UltraScale PL DDR4

DRAM Strength, Ohm

RTT(nom), Ohm

RTT(park), Ohm

Component, 1 or 2 rank

34

40

N/A

1 slot, 1 rank

34

40

N/A

2 slot, 1 rank

34

60

40

1 slot, 2 rank

34

120

60

2 slot, 2 rank

34

240

60

1 slot, 4 rank

34

40

60

 Table 5: PL DDR4 VREF configurations

UltraScale PL DDR4 (Vcc = 1.2V)

WRITE VREF, V

READ VREF, V

WRITE VREF, %

READ VREF, %

Component, 1 or 2 rank

0.88

0.88

73%

73%

1 slot, 1 rank

0.93

0.93

78%

78%

2 slot, 1 rank

0.97

1.01

81%

84%

1 slot, 2 rank

0.93

0.97

78%

81%

2 slot, 2 rank

1.00

0.99

83%

83%

1 slot, 4 rank

0.93

0.97

78%

81%

UltraScale PL DDR3

Table 6: PL DDR3 FPGA drive strength & ODT configuration

UltraScale PL DDR3

FPGA Driver Strength, Ohm

FPGA ODT, Ohm

Component, 1 or 2 rank

40

40

1 slot, 1 rank

40

40

2 slot, 1 rank

40

40

1 slot, 2 rank

40

40

2 slot, 2 rank

40

60

1 slot, 4 rank

40

40

 Table 7: PL DDR3 DRAM drive strength and ODT configuration

UltraScale PL DDR3

DRAM Strength, Ohm

RTT(nom), Ohm

RTT(wr), Ohm

Component, 1 or 2 rank

40

40

Disabled

1 slot, 1 rank

40

40

Disabled

2 slot, 1 rank

40

40

60

1 slot, 2 rank

40

120

60

2 slot, 2 rank

40

60

120

1 slot, 4 rank

40

120

60

 

UltraScale+ PL DDR4

Table 8: PL DDR4 FPGA drive strength & ODT configurations

UltraScale+ PL DDR4

FPGA Driver Strength, Ohm

FPGA ODT, Ohm

Component, 1 or 2 rank

40

40

1 slot, 1 rank

40

60

2 slot, 1 rank

40

60

1 slot, 2 rank

40

60

2 slot, 2 rank

40

60

1 slot, 4 rank

40

60

2 slot, 4 rank

40

60

 

Table 9: PL DDR4 DRAM drive strength and ODT configurations

UltraScale+ PL DDR4

DRAM Strength, Ohm

RTT(nom), Ohm

RTT(park), Ohm

Component, 1 or 2 rank

34

40

N/A

1 slot, 1 rank

34

40

N/A

2 slot, 1 rank

34

60

40

1 slot, 2 rank

34

120

60

2 slot, 2 rank

34

240

60

1 slot, 4 rank

34

40

60

2 slot, 4 rank

34

40

60

 

Table 10: PL DDR4 VREF configurations

UltraScale+ PL DDR4 (Vcc = 1.2V)

WRITE VREF, V

READ VREF, V

WRITE VREF, %

READ VREF, %

Component, 1 or 2 rank

0.88

0.88

73%

74%

1 slot, 1 rank

0.93

0.87

78%

73%

2 slot, 1 rank

0.97

0.98

81%

82%

1 slot, 2 rank

0.93

0.92

78%

77%

2 slot, 2 rank

1.00

0.99

83%

83%

1 slot, 4 rank

0.93

0.89

78%

74%

2 slot, 4 rank

0.93

0.95

78%

79%

 

UltraScale+ PL DDR3

Table 11: PL DDR3 FPGA drive strength & ODT configurations

UltraScale+ PL DDR3

FPGA Driver Strength, Ohm

FPGA ODT, Ohm

Component, 1 or 2 rank

40

40

1 slot, 1 rank

40

40

2 slot, 1 rank

40

40

1 slot, 2 rank

40

40

2 slot, 2 rank

40

60

1 slot, 4 rank

40

40

Table 12: PL DDR3 DRAM drive strength and ODT configurations

UltraScale+ PL DDR3

DRAM Strength, Ohm

RTT(nom), Ohm

RTT(wr), Ohm

Component, 1 or 2 rank

40

40

Disabled

1 slot, 1 rank

40

40

Disabled

2 slot, 1 rank

40

40

60

1 slot, 2 rank

40

120

60

2 slot, 2 rank

40

60

120

1 slot, 4 rank

40

120

60

Manually finding the DRAM Configuration Settings

The settings from the previous configuration tables can be manually found in the following locations

Configuration Settings

DDR4

DDR3

FPGA Configuration Settings

Finding IO details in the xdc

Example configuration: PL DDR4, 1dpc (1 DIMM per Channel), dual-rank,

Finding details in custom IBIS Model

Perform write_ibis from an elaborated design (See Vivado Generated, Custom IBIS Models section)

Locate the desired signal under the [Pin] keyword, the IBIS model name is called out to the right of the signal name.  This IBIS model name contains all the active settings.

Example configuration: PL DDR4, 1dpc, dual rank

Zynq UltraScale+ MPSoC DDR Subsystem Drive Strength, ODT and VREF Configuration

The Zynq MPSoC PS DDR subsystem Memory Controller has been characterized and tested to identify the optimal drive strength, ODT and VREF (initial value) settings.  This chapter provides the values that will always be used for the Zynq MPSoC PS Memory Controller with DDR3, LPDDR3, DDR4 and LPDDR4 DRAM interfaces.  PS DDR drivers do not have discrete settings for drive strength or slew rate.  The drive strength and slew rate can’t be adjusted or read. The drive strength and slew rate settings have been derived from characterization.   The Memory Controller supports the following calibration routines. 

Zynq MPSoC PS DDR4

Table 13: PS DDR4 FPGA drive strength & ODT configurations

UltraScale+ PS DDR4

FPGA Driver Strength, Ohm

FPGA ODT, Ohm

Component, 1 or 2 rank

34

40

1 slot, 1 rank

34

40

1 slot, 2 rank

34

40

Table 14: PS DDR4 DRAM drive strength and ODT configurations

UltraScale+ PS DDR4

DRAM Strength, Ohm

RTT(nom), Ohm

RTT(park), Ohm

Component, 1 rank

34

40

40

Component, 2 rank

34

48

240

1 slot, 1 rank

34

40

40

1 slot, 2 rank

34

48

240

Table 15: PS DDR4 VREF (initial value) configurations

UltraScale+ PS DDR4

DC Calculation (Vcc = 1.2V)

WRITE VREF, V

WRITE VREF, %

All configurations

0.92

76%

 

Zynq MPSoC PS LPDDR4

Table 16: PS LPDDR4 FPGA drive strength & ODT configurations

UltraScale+ PS LPDDR4

FPGA Driver Strength, Ohm

FPGA ODT, Ohm

Component, 1 or 2 rank

40

40

Component, 1 or 2 rank ECC

40

40

 

Table 17: PS LPDDR4 DRAM drive strength and ODT configurations

UltraScale+ PS LPDDR4

DRAM Driver Strength, Ohm

CA RTT, Ohm

DQ RTT, Ohm

Component, 1 or 2 rank

40

48

40

Component, 1 or 2 rank ECC

40

48

40

 

Table 18: PS LPDDR4 VREF (initial value) configurations

UltraScale+ PS LPDDR4

DC Calculation (Vcc = 1.1V)

WRITE VREF CA, V

WRITE VREF DQ, V

WRITE VREF CA, %

WRITE VREF DQ, %

Component, 1 or 2 rank

0.34

0.45

31%

41%

Component, 1 or 2 rank ECC

0.34

0.44

31%

40%

 

Zynq MPSoC PS DDR3/3L

Table 19: PS DDR3 FPGA drive strength & ODT configurations

UltraScale+ PS DDR3/3L

FPGA Driver Strength, Ohm

FPGA ODT, Ohm

Component, 1 or 2 rank

40

40

1 slot, 1 rank

40

40

1 slot, 2 rank

40

40

1 slot, RDIMM, 1 rank

40

40

1 slot, RDIMM, 2 rank

40

60

 

Table 20: PS DDR3 DRAM drive strength and ODT configurations

UltraScale+ PS DDR3/3L

DRAM Strength, Ohm

RTT(nom), Ohm

RTT(wr), Ohm

Component, 1 rank

40

60

Disabled

Component, 2 rank

40

120

60

1 slot, 1 rank

40

60

Disabled

1 slot, 2 rank

40

120

60

1 slot, RDIMM, 1 rank

40

60

Disabled

1 slot, RDIMM, 2 rank

40

120

60

 

UltraScale+ PS LPDDR3

Table 21: PS LPDDR3 FPGA drive strength & ODT configurations

UltraScale+ PS LPDDR3

FPGA Driver Strength, Ohm

FPGA ODT, Ohm

Component, 1 or 2 rank

40

120

 

Table 22: PS LPDDR3 DRAM drive strength and ODT configurations

UltraScale+ PS LPDDR3

DRAM Driver Strength, Ohm

RTT(nom), Ohm

Component, 1 or 2 rank

34.3

120

 

Manually finding the DRAM Configuration Settings

The settings from the previous configuration tables can be manually found in the following locations

DDR Configuration Settings

DDR4

LPDDR4

DDR3

LPDDR3 Configuration Settings

IBIS Models

Xilinx provides I/O Buffer Information Specification (IBIS) models for all supported I/O standards in FPGA and MPSoC devices.  This chapter provides guides on how to obtain custom and generic IBIS models. To aid in reviewing the IBIS models, name decoders have been included for both PL and PS models.

Generic and Custom IBIS models can be obtained or generated through the following methods. 

  1. Generic IBIS models from Xilinx.com

  2. Generate a custom IBIS model for PL designs

    1. Generate a custom PL IBIS File from the I/O Pin Planner

    2. Creating a Custom IBIS File from an Implemented Design

  3. Generate a custom IBIS model for the Zynq MPSoC PS DDR

DDR specific IBIS model name decoders have been included for PL and PS models.

  1. PL I/O Standards

  2. PS DDR I/O Standards  

These represent a subset of the IBIS models provided by Xilinx.  For a complete IBIS decoding guide, please see the blog post “Xilinx PL and PS IBIS Model Decoders

Generic IBIS Models from Xilinx.com

The generic IBIS model file contains models for all IO Standards supported by the selected family.  The generic IBIS model is package and die size agnostic.  A global RLC package model is set for every available IO.  The generic IBIS model contains every available IO model with no specific pin assignments.  The generic models are recommended for a small number of signals in a schematic level simulation.  It is not recommended to use the generic models for board level simulations.

Figure 1: Capture of available UltraScale+ IBIS Models from Xilinx.com

Figure 1: Available UltraScale+ IBIS Models from Xilinx.com

Generic IBIS models can be found here

Vivado Generated, Custom IBIS Models

The Vivado generated, custom IBIS models are device, package and design specific.  The Vivado generated IBIS models can be used for Board Level and Schematic Level simulations.  The custom IBIS models include RLC package details for each individual package pin.

When generating a Custom IBIS model with a DDR IP (PL or PS) you must use the default IO settings like slew, equalization, ODT and drive strength.  These parameters are set by the memory configuration (FPGA, DRAM Type and Topology).  This information is summarized in the PL Controller and PS Controller Drive Strength, ODT and VREF Configurations.

How to generate custom IBIS Files from Vivado

The following guides can be used to create custom PL or PS IBIS file(s) from within Vivado:

Generate a custom PL IBIS File from the I/O Pin Planner

Creating an IBIS file from the I/O Pin Planner is useful for performing signal integrity simulations even if full Vivado design is not yet available.  If the pin-out of the Xilinx device is known, along with the required I/O standards and parameters, a custom IBIS file can be created.

The procedure is as follows:

Figure 2: Create Project

Figure 3: Create New Vivado Project

Figure 4: Project Name

Figure 5: Project Type

 

Figure 6: Import Ports option

Figure 7: Part Selection

Figure 8: New Project Summary

Figure 9: Device View

Example CSV File

Figure 10: Example CSV File

Figure 11: Import I/O Ports

Figure 12: Import I/O Ports popup window

Figure 13: I/O Ports tab

Figure 14: Export IBIS Model

Figure 15: Export IBIS Model, I/O Planner

Creating a Custom PL IBIS File from an Implemented Design

The procedure for creating a custom IBIS file from an implemented design is very straight-forward, as all pin assignments have been completed as part of the design implementation.

Figure 16: Implement Design

 

Figure 17: Export IBIS Model from Implemented Design

 

Figure 18: Export IBIS Model, Implemented Design

 


 

How to Generate Custom IBIS File for Zynq PS DDR

To generate a custom IBIS file for the Zynq PS DDR launch a new RTL Project in Vivado. 

Figure 19: Create Block Design

Figure 20: Add Zynq UltraScale+ MPSoC Block

Figure 21: Zynq UltraScale+ MPSoC Block

Figure 22: Zynq Re-customize IP Window (PCW)

Figure 23: Other Memory Options

Figure 24: Make Ports External

Figure 25: Zynq Block with External Ports

Figure 26: Address Editor

 

Figure 27: Create HDL Wrapper

Figure 28: Create HDL Wrapper options

Figure 29: Open Elaborated Design

Figure 30: Elaborated Design Popup

Figure 31: Export PS IBIS Model

Figure 32: Export IBIS Model Options

Xilinx PL IBIS Decoder

The PL IBIS Decoder (Table 23) can be used to decode PL IBIS models for all PL I/Os.  This applies to the Zynq MPSoC PL I/Os.

Table 23: PL IBIS Decoder

Xilinx PL IBIS Model Settings

Base Model

BANK-TYPE_IOSTANDARD_SLEW_OUTPUT-IMPEDANCE*_INPUT-ODT_PRE-EMPHASIS

  • OUTPUT-IMPEDANCE or OUTPUT-DRIVE-STRENGTH depending on IOSTANDARD

Model Setting

Options

Available Documentation

BANK-TYPE

HP, HR, HD

UG571, Ch  1, I/O Tile Overview

IOSTANDARD

See supported I/O standard for BANK-TYPE

HP & HR: UG571, Ch 1, Supported I/O Standards and Terminations
HD: UG571, Ch 3, HD I/O Supported Standards

SLEW

FAST, MEDIUM, SLOW

UG571, Ch 1, Output Slew Rate Attributes

OUTPUT-IMPEDANCE (Ohm)*

40, 48, 60 or None

UG571, Ch 1, Source Termination Attribute (OUTPUT_IMPEDANCE)

OUTPUT-STRENGTH (mA)*

4, 8, 12 or 16

UG571, Ch 1, Output Drive Strength Attributes

INPUT-ODT (Ohm)

40, 48, 60, 120, 240 or None

UG571, Ch 1, On-Die Termination (ODT) Attribute

PRE-EMPHASIS

PE1600 or PE2400

UG571, Ch 1, Transmitter Pre-Emphasis

 

All models (except for LVDS*) will contain Bank Type, IOStandard, Slew Rate and Output Impedance/Drive Strength.

Internal 100-ohm Differential Termination is only available in banks powered at 1.8V (LVDS) or 2.5V (LVDS_25).  See (UG571), v1.12, p.130 for more details.

 

Note: not all model settings will be present in every IBIS model.  If a setting is not in the model name, that setting is not supported by the model.

Table 24 provides an example of the PL DDR4 IBIS Models.

Table 24: PL DDR4 IBIS Models

Example DDR4 IBIS Models

Signal Name

Model Name

Model Settings

DQ, DQS, DM

HP_POD12_DCI_F_OUT40_IN40_PE2400

Bank type: HP
IO Standard: POD
Bank Voltage: 1.2V
Digitally Controlled Impedance (DCI)
Slew rate: Fast
Output Impedance: 40 ohm
Input ODT: 40 Ohm
Pre-Emphasis enabled

Clock, Address & Command

HP_SSTL12_DCI_F_OUT40

Bank type: HP
IO Standard: SSTL
Bank Voltage: 1.2V
DCI
Slew rate: Fast
Output Impedance: 40 ohm

Xilinx Zynq PS DDR IBIS Decoder

The Zynq MPSoC PS DDR IBIS signals are unique from all other signals.

Table 25 is a decoder for the Zynq MPSoC PS DDR IBIS models. 

Examples of each DDR memory type IBIS model are provided in Tables 26 through 30

Table 25: Zynq PS DDR IBIS Decoder

Zynq PS DDR IBIS Decoder

Base Model

 DWC_D5MXY_Z_MS

X

IO Type

C

Clock, Command, Control, Address

P

Data, Data Mask

Q

Data Strobe

Y

Memory Technology

3

DDR3

3L

DDR3L

L3

LPDDR3

4

DDR4

L4

LPDDR4

Z*

Output Impedance and/or Input Termiantion

  • Output and termination impedances are not adjustable on the PS DDR controller.

xx

Ouput impedance
xx = 34 ohms (DDR4)
xx = 40 ohms (DDR3, DDR3L, LPDDR3, LPDDR4)

ODTxx

input termination
xx = 40 ohms (DDR3, DDR3L)

xxODTyy

Output Impedance with input termination
(DDR4, LPDDR3 & LPDDR4)
xx = 34 ohms (DDR4)
xx = 40 ohms (LPDDR3)
xx = 80 ohms (LPDDR4)
yy = 40 ohms (DDR4, LPDDR4)
yy = 120 ohms (LPDDR3)

MS

Model Selector

 

The DQ and DQS models support the Model Selector feature.  This is indicated by the "_MS" suffix. 
This will point the simulator to the [Model Selector] keyword in the IBIS file.
The [Model Selector] keyword defines the ODT behavior.

Zynq PS DDR IBIS Examples

Table 26: PS DDR4

DDR4

Signal Name

Model Name

Notes

PS_DDR4_CK_P/N (OUT)

DWC_D5MC4_34

 Clock

PS_DDR4_A* (OUT)

DWC_D5MC4_34

Applies to Address, Command and Control

PS_DDR4_DQ* (IN/OUT)

DWC_D5MP4_34ODT_MS

See Model Selector Example

PS_DDR4_DQS* (IN/OUT)

DWC_D5MQ4_34ODT_MS

See Model Selector Example

Model Selector Example

DWC_D5MP4_34ODT_MS

DWC_D5MP4_34 or DWC_D5MP4_34ODT40

DWC_D5MQ4_34ODT_MS

DWC_D5MP4_34 or DWC_D5MP4_34ODT40

Table 27: PS LPDDR4

LPDDR4

Signal Name

Model Name

Notes

PS_LPDDR4_CK_P/N (OUT)

DWC_D5MCL4_40

 Clock

PS_LPDDR4_A* (OUT)

DWC_D5MCL4_40

Applies to Address, Command and Control

PS_LPDDR4_DQ* (IN/OUT)

DWC_D5MPL4_80ODT_MS

See Model Selector Example

PS_LPDDR4_DQS* (IN/OUT)

DWC_D5MQL4_80ODT_MS

See Model Selector Example

Model Selector Example

DWC_D5MPL4_80ODT_MS

DWC_D5MPL4_40 or DWC_D5MPL4_80ODT40

DWC_D5MQL4_80ODT_MS

DWC_D5MQL4_40 or DWC_D5MQL4_80ODT40

 

Table 28: PS DDR3

DDR3

Signal Name

Model Name

Notes

PS_DDR3_CK_P/N (OUT)

DWC_D5MC3_40

 Clock

PS_DDR3_A* (OUT)

DWC_D5MC3_40

Applies to Address, Command and Control

PS_DDR3_DQ* (IN/OUT)

DWC_D5MP3_ODT_MS

See Model Selector Example

PS_DDR3_DQS* (IN/OUT)

DWC_D5MQ3_ODT_MS

See Model Selector Example

Model Selector Example

DWC_D5MP3_ODT_MS

DWC_D5MP3_40 or DWC_D5MP3_ODT40

DWC_D5MQ3_ODT_MS

DWC_D5MQ3_40 or DWC_D5MQ3_ODT40

 

Table 29: PS DDR3L

DDR3L

Signal Name

Model Name

Notes

PS_DDR3L_CK_P/N (OUT)

DWC_D5MC3L_40

 Clock

PS_DDR3L_A* (OUT)

DWC_D5MC3L_40

Applies to Address, Command and Control

PS_DDR3L_DQ* (IN/OUT)

DWC_D5MP3L_ODT_MS

See Model Selector Example

PS_DDR3L_DQS* (IN/OUT)

DWC_D5MQ3L_ODT_MS

See Model Selector Example

Model Selector Example

DWC_D5MP3L_ODT_MS

DWC_D5MP3L_40 or DWC_D5MP3L_ODT40

DWC_D5MQ3L_ODT_MS

DWC_D5MQ3L_40 or DWC_D5MQ3L_ODT40

 

Table 30: PS LPDDR3

LPDDR3

Signal Name

Model Name

Notes

PS_LPDDR3_CK_P/N (OUT)

DWC_D5MCL3_40

 Clock

PS_LPDDR3_A* (OUT)

DWC_D5MCL3_40

Applies to Address, Command and Control

PS_LPDDR3_DQ* (IN/OUT)

DWC_D5MPL3_40ODT_MS

See Model Selector Example

PS_LPDDR3_DQS* (IN/OUT)

DWC_D5MQL3_40ODT_MS

See Model Selector Example

Model Selector Example

DWC_D5MPL3_40ODT_MS

DWC_D5MPL3_40 or DWC_D5MPL3_40ODT120

DWC_D5MQL3_40ODT_MS

DWC_D5MQL3_40 or DWC_D5MQL3_40ODT120  

Available Resources for HyperLynx and ADS Simulation Tools

Xilinx provides the following resources to aid in performing DDR interface simulations. The UltraScale+ content is available through the UltraScale+ Signal and Power Integrity Lounge or upon request.  Please submit requests through your FAE.

UltraScale+

UltraScale+ Signal and Power Integrity Lounge

HyperLynx DDRx Tips

This section provides some tips on how to properly setup the HyperLynx DDRx wizard.  This is not a comprehensive guide on how to use the DDRx wizard. 

ODT Models

ODT Models need to be set in the DDRx Wizard.  Use the appropriate impedance and ODT values for the PL or PS Controller and DDR type.  The capture below is the setup for the Xilinx ZCU104, 64-bit component DDR4 interface.

Figure 33: DDRx ODT Models

Leveling and Calibration

The PL and PS DDR controllers support the leveling and calibration settings in the capture below.  It is recommended to select “Automatically run simulation 2 times: to estimate skews and to apply them”

Figure 34: DDRx Leveling and Calibration

Timing Models

For the most accurate DDRx simulation, it is recommended to use the Xilinx timing models. 

If Xilinx timing models for the target data rate are not available, two options

Figure 35: DDRx Timing Models

VREF Training

For PL DDR4, PS DDR4 and PS LPDDR4 select “Single VREF for all the signals”. 

Figure 36: DDRx VREF Training

 

Simulation Options

Set desired IC model corners.  In HyperLynx version 2.4 and newer, the measurement location can be set on the Simulation options page.  

Figure 37: DDRx Simulation Options

Figure 38 shows an example of probing at the Zynq pin vs Zynq die on ZCU104, PS DDR4, DQ4

Figure 38: Probe Location Example

If using a HyperLynx version before v2.4, the Xilinx Custom IBIS model will need to be modified to indicate the timing location.  If no timing location is in the IBIS model, timing will be performed at the pin.

Figure 39: IBIS File Modification for Probe Point