This page provides all the information related to Design Module 3 - VCU TRD Multi stream Audio-Video design.

Table of Contents

1 Overview

The primary goal of this Design is to demonstrate the capabilities of VCU hard block present in Zynq UltraScale+ EV devices with soft audio codec. The TRD will serve as a platform to tune the performance parameters of VCU and arrive at optimal configurations for encoder and decoder blocks with audio-video synchronization.

This design supports the following video interfaces:

Sources:

Sinks:

VCU Codec:

Streaming Interfaces:

Video format:

Audio Configuration:

Audio Deliverables:

Pipeline

Video-Input Source 

Audio Input Source

Video Output Type

Audio Output Type

ALSA Drivers

Resolution

Audio Codec Type

Audio Configuration

Video Codec Type

Deliverables

Record / Stream-Out pipeline

  1. HDMI-Rx

  2. MIPI-Rx

  1. HDMI-Rx

  2. I2S-Rx

File-Sink
Stream-Out

File-Sink
Stream-Out

HDMI-Rx ALSA drivers

4K / 1080p

Opus

2 channel @ 48 kHz

HEVC / AVC

HDMI-Rx Audio encode with soft codec and video with VCU and store it in a container format.

Playback pipeline

File Source/ Stream-In

File Source/ Stream-In

DP
HDMI –Tx

  1. HDMI-Tx

  2. I2S-Tx

  3. DP

HDMI-Tx ALSA drivers

4K / 1080p

Opus

2 channel @ 48 kHz

HEVC / AVC

Playback of the local-file / stream-in with video decoded using VCU and Audio using GStreamer soft codec.

Capture → Display

  1. HDMI-Rx

  2. MIPI-Rx

  1. HDMI-Rx

  2. I2S-Rx

DP
HDMI -Tx

  1. HDMI-Tx

  2. I2S-Tx

  3. DP

HDMI-Rx/Tx ALSA drivers

4K / 1080p

NA

2 channel @ 48 kHz

HEVC / AVC

HDMI-Rx Audio / Video pass to HDMI-Tx without VCU/Audio-Codec.

Capture → Encod → Decode → Display

  1. HDMI-Rx

  2. MIPI-Rx

  1. HDMI-Rx

  2. I2S-Rx

DP
HDMI -Tx

  1. HDMI-Tx

  2. I2S-Tx

  3. DP

HDMI-Rx/Tx ALSA drivers

4K / 1080p

NA

2 channel @ 48 kHz

HEVC / AVC

HDMI-Rx raw audio and video with VCU encoder and decode to achieve AV sync.

Other features:

Supported Resolution:

The table below provides the supported resolution from GUI and command-line app in this design.

Resolution

GUI

Command Line

Single Stream

Single Stream

Multi-stream

4Kp60

X

NA

4Kp30

√ (Max 2)

1080p60

√ (Max 2)

√ - Supported
x – Not supported
NA – Not applicable

The below sections describe the HDMI / MIPI Video Capture and HDMI Display with the Audio from HDMI / I2S sources. It is VCU TRD design supporting HDMI-Rx audio/video + HDMI-Tx with Audio/video and MIPI-Rx video + I2S-Rx audio with HDMI-Tx video + I2S-Tx audio.

For the overview, software tools, system requirements, and design files follow the link below:

The below figure shows the HDMI, MIPI Video Capture along with HDMI, I2S Audio Capture and HDMI Display with Audio design hardware block diagram.

                                                                       

The below figure shows the HDMI, MIPI Video Capture  along with HDMI, I2S Audio Capture and HDMI Display with Audio design software block diagram.

                                                         

1.1 Board Setup

Refer below link for Board Setup

1.2 Run Flow

The TRD package is released with the source code, Vivado project, Petalinux BSP, and SD card image that enables the user to run the demonstration. It also includes the binaries necessary to configure and boot the ZCU106 board. Prior to running the steps mentioned in this wiki page, download the TRD package and extract its contents to a directory referred to as TRD_HOME which is the home directory.

Refer below link to download all TRD contents.

TRD package contents are placed in the following directory structure. The user needs to copy all the files from the $TRD_HOME/images/vcu_audio/ to FAT32 formatted SD card directory.

rdf0428-zcu106-vcu-trd-2020.2
├── apu
│   └── vcu_petalinux_bsp
├── images
│   ├── vcu_10g
│   ├── vcu_audio
│   ├── vcu_hdr10_hdmi
│   ├── vcu_llp2_hdmi_nv12
│   ├── vcu_llp2_hdmi_nv16
│   ├── vcu_llp2_hdmi_xv20
│   ├── vcu_llp2_sdi_xv20
│   ├── vcu_multistream_nv12
│   ├── vcu_pcie
│   ├── vcu_quad_sensor
│   └── vcu_sdi_xv20
├── pcie_host_package
│   ├── COPYING
│   ├── include
│   ├── LICENSE
│   ├── readme.txt
│   ├── RELEASE
│   ├── tests
│   ├── tools
│   └── xdma
├── pl
│   ├── constrs
│   ├── designs
│   ├── prebuild
│   ├── README.md
│   └── srcs
└── README.txt

TRD package contents specific to Multi-stream Audio-Video design is placed in the following directory structure.

rdf0428-zcu106-vcu-trd-2020.2
├── apu
│   └── vcu_petalinux_bsp
│       └── xilinx-vcu-zcu106-v2020.2-final.bsp
├── images
│   ├── vcu_audio
│   │   ├── autostart.sh
│   │   ├── BOOT.BIN
│   │   ├── boot.scr
│   │   ├── config
│   │   ├── image.ub
│   │   ├── system.dtb
│   │   └── vcu
├── pcie_host_package
├── pl
│   ├── constrs
│   ├── designs
│   │   └── zcu106_audio
│   ├── prebuild
│   │   └── zcu106_audio
│   ├── README.md
│   └── srcs
│       ├── hdl
│       └── ip
└── README.txt

configuration files (input.cfg) for various Resolutions are placed in the following directory structure in /media/card.

config
├── 1-4kp60
│   ├── Display
│   ├── Record
│   ├── Stream-in
│   └── Stream-out
├── 2-1080p60
│   ├── Display
│   ├── Record
│   ├── Stream-in
│   └── Stream-out
├── 2-4kp30
│   ├── Display
│   ├── Record
│   ├── Stream-in
│   └── Stream-out
└── input.cfg

1.2.1 GStreamer Application (vcu_gst_app)

The vcu_gst_app is a command-line multi-threaded Linux application. The command-line application requires an input configuration file (input.cfg) to be provided in the plain text.

$ modetest -D a0070000.v_mix -s 44:3840x2160-60@AR24
$ modetest -D a0070000.v_mix -s 44:3840x2160-30@AR24 &

Execution of the application is shown below:

$ vcu_gst_app <path to *.cfg file>

Example:

4Kp60 HEVC_HIGH Display Pipeline execution

$ vcu_gst_app /media/card/config/1-4kp60/Display/Single_4kp60_HEVC_HIGH.cfg

4Kp60 HEVC_HIGH Record Pipeline execution

$ vcu_gst_app /media/card/config/1-4kp60/Record/Single_4kp60_HEVC_HIGH.cfg

4Kp60 HEVC_HIGH Stream-out Pipeline execution

$ vcu_gst_app /media/card/config/1-4kp60/Stream-out/Single_4kp60_HEVC_HIGH.cfg

4Kp60 HEVC_HIGH Stream-in Pipeline execution

$ vcu_gst_app /media/card/config/1-4kp60/Stream-in/Single_4kp60_HEVC_HIGH.cfg
note

Make sure HDMI-Rx should be configured to 4kp60 mode

Make sure HDMI-Rx should be configured to 4kp60 mode

Latency Measurement: To measure the latency of the pipeline, run the below command. The latency data is huge, so dump it to a file.

$ GST_DEBUG="GST_TRACER:7" GST_TRACERS="latency" GST_DEBUG_FILE=/run/latency.log vcu_gst_app /media/card/config/input.cfg

Refer below link for detailed run flow steps

1.3 Build Flow

Refer below link for Build Flow


2 Other Information

2.1 Known Issues

2.2 Limitations

2.3 Optimum VCU Encoder parameters for use-cases:

Video streaming:

Performance: AVC Encoder settings:

Quality: Low bitrate AVC encoding:

2.4 Audio-Video Synchronization

Clocks and synchronization in GStreamer

When playing complex media, each sound and video sample must be played in a specific order at a specific time. For this purpose, GStreamer provides a synchronization mechanism.

GStreamer provides support for the following use cases:

GStreamer uses a GstClock object, buffer timestamps and a SEGMENT event to synchronize streams in a pipeline as we will see in the next sections.

See the GStreamer documenation for more information:

Clock running-time

In a typical computer, there are many sources that can be used as a time source, e.g., the system time, soundcards, CPU performance counters, etc. For this reason, GStreamer has many GstClock implementations available. Note that clock time doesn't have to start from 0 or any other known value. Some clocks start counting from a particular start date, others from the last reboot, etc.

A GstClock returns the absolute-time according to that clock with gst_clock_get_time (). The absolute-time (or clock time) of a clock is monotonically increasing.
running-time is the difference between a previous snapshot of the absolute-time called the base-time, and any other absolute-time.
running-time = absolute-time - base-time

A GStreamer GstPipeline object maintains a GstClock object and a base-time when it goes to the PLAYING state. The pipeline gives a handle to the selected GstClock to each element in the pipeline along with selected base-time. The pipeline will select a base-time in such a way that the running-time reflects the total time spent in the PLAYING state. As a result, when the pipeline is PAUSED, the running-time stands still.

Because all objects in the pipeline have the same clock and base-time, they can thus all calculate the running-time according to the pipeline clock.

Buffer running-time

To calculate a buffer running-time, we need a buffer timestamp and the SEGMENT event that preceded the buffer. First we can convert the SEGMENT event into a GstSegment object and then we can use the gst_segment_to_running_time () function to perform the calculation of the buffer running-time.

Synchronization is now a matter of making sure that a buffer with a certain running-time is played when the clock reaches the same running-time. Usually, this task is performed by sink elements. These elements also have to take into account the configured pipeline's latency and add it to the buffer running-time before synchronizing to the pipeline clock.

Non-live sources timestamp buffers with a running-time starting from 0. After a flushing seek, they will produce buffers again from a running-time of 0.
Live sources need to timestamp buffers with a running-time matching the pipeline running-time when the first byte of the buffer was captured.

Buffer stream-time

The buffer stream-time, also known as the position in the stream, is a value between 0 and the total duration of the media and it's calculated from the buffer timestamps and the preceding SEGMENT event.

The stream-time is used in:

The stream-time is never used to synchronize streams, this is only done with the running-time.

Time overview

Here is an overview of the various timelines used in GStreamer.

The image below represents the different times in the pipeline when playing a 100ms sample and repeating the part between 50ms and 100ms.

You can see how the running-time of a buffer always increments monotonically along with the clock-time. Buffers are played when their running-time is equal to the clock-time - base-time. The stream-time represents the position in the stream and jumps backwards when repeating.

Clock providers

A clock provider is an element in the pipeline that can provide a GstClock object. The clock object needs to report an absolute-time that is monotonically increasing when the element is in the PLAYING state. It is allowed to pause the clock while the element is PAUSED.

Clock providers exist because they play back media at some rate, and this rate is not necessarily the same as the system clock rate. For example, a sound card may play back at 44.1 kHz, but that doesn't mean that after exactly 1 second according to the system clock, the sound card has played back 44100 samples. This is only true by approximation. In fact, the audio device has an internal clock based on the number of samples played that we can expose.

If an element with an internal clock needs to synchronize, it needs to estimate when a time according to the pipeline clock will take place according to the internal clock. To estimate this, it needs to slave its clock to the pipeline clock.

If the pipeline clock is exactly the internal clock of an element, the element can skip the slaving step and directly use the pipeline clock to schedule playback. This can be both faster and more accurate. Therefore, generally, elements with an internal clock like audio input or output devices will be a clock provider for the pipeline.

When the pipeline goes to the PLAYING state, it will go over all elements in the pipeline from sink to source and ask each element if they can provide a clock. The last element that can provide a clock will be used as the clock provider in the pipeline. This algorithm prefers a clock from an audio sink in a typical playback pipeline and a clock from source elements in a typical capture pipeline.

There exist some bus messages to let you know about the clock and clock providers in the pipeline. You can see what clock is selected in the pipeline by looking at the NEW_CLOCK message on the bus. When a clock provider is removed from the pipeline, a CLOCK_LOST message is posted and the application should go to PAUSED and back to PLAYING to select a new clock.

For more detail please refer: https://gstreamer.freedesktop.org/documentation/application-development/advanced/clocks.html?gi-language=c


3 Appendix A - Input Configuration File (input.cfg)

The example configuration files are stored at /media/card/config/ folder.

Configuration Type

Configuration Name

Description

Available Options

Common

Common Configuration

It is the starting point of common configuration

Num of Input

Provide the number of inputs. This is 1 for single stream and 2 in case of Multi-stream.

1 to 2

Output

Select the video interface

HDMI or DP

Out Type

Type of output

display, record, stream

Display Rate

Pipeline frame rate

30 or 60 fps

Exit

It indicates to the application that the configuration is over

Input

Input Configuration

It is the starting point of the input configuration

Input Num

Starting Nth input configuration

1 to 2

Input Type

Input source type

HDMI, MIPI, File, Stream

Uri

File path or Network URL. Applicable for file playback and stream-in pipeline only. Supported file formats for playback are ts, mp4, and mkv.

file:///run/media/sda/abc.ts (for file path), udp://192.168.25.89:5004/ (for Network streaming, Here 192.168.25.89 is Client's IP address and 5004 is port number)

Raw

To tell the pipeline is processed or pass-through

True, False

Width

The width of the live source

3840, 1920

Height

The height of the live source

2160, 1080

Format

The format of input data

NV12

Enable SCD

Stream-based SCD supports with HDMI input source only and must be enabled; and with MIPI input source it must be disabled

True, False

Exit

It indicates to the application that the configuration is over

Encoder

Encoder Configuration

It is the starting point of encoder configuration

Encoder Num

Starting Nth encoder configuration

1 to 2

Encoder Name

Name of the encoder

AVC, HEVC

Profile

Name of the profile

AVC: baseline, main or high
HEVC: Main

Rate Control

Rate control options

CBR, VBR, and low_latency

Filler Data

Filler Data NAL units for CBR rate control

True, False

QP

QP control mode used by the VCU encoder

Uniform, Auto

L2 Cache

Enable or Disable L2Cache buffer in encoding process

True, False

Latency Mode

Encoder latency mode.

Normal, sub_frame

Low Bandwidth

If enabled, decrease the vertical search range used for P-frame motion estimation to reduce the bandwidth.

True, False

Gop Mode

Group of Pictures mode.

Basic, low_delay_p, low_delay_b

Bitrate

Target bitrate in Kbps

1-60000

B Frames

Number of B-frames between two consecutive P-frames

0-4

Slice

The number of slices produced for each frame. Each slice contains one or more complete macroblock/CTU row(s). Slices are distributed over the frame as regularly as possible. If slice-size is defined as well more slices may be produced to fit the slice-size requirement.

4-22 4Kp resolution with HEVC codec
4-32 4Kp resolution with AVC codec
4-32 1080p resolution with HEVC codec
4-32 1080p resolution with AVC codec

GoP Length

The distance between two consecutive I frames

1-1000

GDR Mode

It specifies which Gradual Decoder Refresh(GDR) scheme should be used when gop-mode = low_delay_p

note

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only

Horizontal, Vertical, Disabled

Entropy Mode

It specifies the entropy mode for H.264 (AVC) encoding process

CAVLC, CABAC, Default

Max Picture Size

It is used to curtail instantaneous peak in the bit-stream using this parameter. It works in CBR/VBR rate-control only. When it is enabled, max-picture-size value is calculated and set with 10% of AllowedPeakMargin. i.e. max-picture-size =  (TargetBitrate / FrameRate) * 1.1

note

It works in CBR/VBR rate-control only

It works in CBR/VBR rate-control only

True, False

Format

The format of input data

NV12

Preset

Based on provided six presets, predefined configuration will be set for encoder parameters. Select custom to provide user-specific options for encoder parameters.

HEVC_HIGH, HEVC_MEDIUM, HEVC_LOW, AVC_HIGH, AVC_MEDIUM, AVC_LOW, Custom

Exit

It indicates to the application that the configuration is over

Record

Record Configuration

It is the starting point of record configuration

Record Num

Starting Nth record configuration

1 to 2

Out-File Name

Record file path

note

See Mount Location for additional file paths

See Mount Location for additional file paths

e.g. /run/media/sda/abc.ts

Duration

Duration in minutes

1-3

Exit

It indicates to the application that the configuration is over

Streaming

Streaming Configuration

It is the starting point of streaming configuration.

Streaming Num

Starting Nth Streaming configuration

1 to 2

Host IP

The host to send the packets to the client

192.168.25.89 or Windows PC IP

Port

The port to send the packets to port number

5004, 5006

Exit

It indicates to the application that the configuration is over.

Audio Configuration

Audio Configuration

It is the starting point of the audio configuration.

Audio Num

Starting Nth Audio configuration

1 to 2

Audio Enable

Enable or Disable audio in pipeline

True, False

Audio Format

The format of the audio

S24_32LE (for serial use-cases)

Sampling Rate

To set the audio sampling rate

48000

Num Of Channel

The number of audio channels

1-2

Source

To set audio input source

HDMI or I2S

Renderer

To set audio output device

HDMI, DP or I2S

Exit

It indicates to the application that the configuration is over

Trace

Trace Configuration

It is the starting point of trace configuration

FPS Info

To display achieved frame per second information on the console

True, False

APM Info

To display APM counter number on the console

True, False

Pipeline Info

To display pipeline info on console

True, False

Exit

It indicates to the application that the configuration is over

Mount Locations

The mount locations for various devices can be found in the below table.
The mount locations can vary.  Users can use lsblk or mount to find the location of the mounted devices.

Below are some example mount points

Device

Mount Location

SD Card

/media/card

Sata Drive

/run/media/sda

USB Drive

/media/usb

RAM Disk

/run/media


4 Appendix B - HDMI-Rx/Tx Link-up and GStreamer Commands

This section covers configuration of HDMI-Rx using media-ctl utility and HDMI-Tx using modetest utility, along with demonstrating HDMI-Rx/Tx link-up issues and steps to switch HDMI-Rx resolution. It also contains sample GStreamer HDMI Audio+Video (also I2S Audio + MIPI CSI Video pipelines for Display, Record & Playback, Stream-in and Stream-out use-cases.

$ killall -9 run_vcu.sh
$ killall -9 vcu_qt
$ killall -9 Xorg
$ media-ctl -p -d /dev/mediaX
root@zcu106_vcu_audio:/media/card# media-ctl -p -d /dev/mediaX
Media controller API version 5.4.0

Media device information
------------------------
driver          xilinx-video
model           Xilinx Video Composite Device
serial          
bus info        
hw revision     0x0
driver version  5.4.0

Device topology
- entity 1: vcap_hdmi_input_v_scenechange_0 (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video0 -----> Video node for HDMI-Rx source
	pad0: Sink
		<- "xlnx-scdchan.0":1 [ENABLED]

- entity 5: xlnx-scdchan.0 (2 pads, 2 links)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev6
	pad0: Sink
		[fmt:VYYUYY8_1X24/3840x2160 field:none]
		<- "a0080000.v_proc_ss":1 [ENABLED]
	pad1: Source
		[fmt:VYYUYY8_1X24/3840x2160 field:none]
		-> "vcap_hdmi_input_v_scenechange_0":0 [ENABLED]

- entity 8: a0080000.v_proc_ss (2 pads, 2 links)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev7
	pad0: Sink
		[fmt:VYYUYY8_1X24/1280x720 field:none colorspace:srgb]
		<- "a0000000.v_hdmi_rx_ss":0 [ENABLED]
	pad1: Source
		[fmt:VYYUYY8_1X24/1920x1080 field:none colorspace:srgb]
		-> "xlnx-scdchan.0":0 [ENABLED]

- entity 11: a0000000.v_hdmi_rx_ss (1 pad, 1 link)
             type V4L2 subdev subtype Unknown flags 0
             device node name /dev/v4l-subdev8
	pad0: Source
		[fmt:RBG888_1X24/3840x2160 field:none]
		[dv.caps:BT.656/1120 min:0x0@25000000 max:4096x2160@297000000 stds:CEA-861,DMT,CVT,GTF caps:progressive,reduced-blanking,custom]
		[dv.detect:BT.656/1120 3840x2160p60 (4400x2250) stds:CEA-861 flags:CE-video] -----> Resolution and Frame-rate of HDMI-Rx source
		-> "a0080000.v_proc_ss":0 [ENABLED]
note

Check resolution and frame-rate of "dv.detect" under "v_hdmi_rx_ss" node

Check resolution and frame-rate of "dv.detect" under "v_hdmi_rx_ss" node

root@zcu106_vcu_audio:/media/card# media-ctl -p -d /dev/mediaX
Media controller API version 5.4.0


Media device information
------------------------
driver          xilinx-video
model           Xilinx Video Composite Device
serial          
bus info        
hw revision     0x0
driver version  5.4.0

Device topology
- entity 1: vcap_hdmi_input_v_scenechange_0 (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video0 -----> Video node for HDMI-Rx source
	pad0: Sink
		<- "xlnx-scdchan.0":1 [ENABLED]

- entity 5: xlnx-scdchan.0 (2 pads, 2 links)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev6
	pad0: Sink
		[fmt:VYYUYY8_1X24/3840x2160 field:none]
		<- "a0080000.v_proc_ss":1 [ENABLED]
	pad1: Source
		[fmt:VYYUYY8_1X24/3840x2160 field:none]
		-> "vcap_hdmi_input_v_scenechange_0":0 [ENABLED]

- entity 8: a0080000.v_proc_ss (2 pads, 2 links)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev7
	pad0: Sink
		[fmt:VYYUYY8_1X24/1280x720 field:none colorspace:srgb]
		<- "a0000000.v_hdmi_rx_ss":0 [ENABLED]
	pad1: Source
		[fmt:VYYUYY8_1X24/1920x1080 field:none colorspace:srgb]
		-> "xlnx-scdchan.0":0 [ENABLED]

- entity 11: a0000000.v_hdmi_rx_ss (1 pad, 1 link)
             type V4L2 subdev subtype Unknown flags 0
             device node name /dev/v4l-subdev8
	pad0: Source
		[fmt:RBG888_1X24/3840x2160 field:none]
		[dv.caps:BT.656/1120 min:0x0@25000000 max:4096x2160@297000000 stds:CEA-861,DMT,CVT,GTF caps:progressive,reduced-blanking,custom]
		[dv.query:no-link] -----> HDMI-Rx Link Status
		-> "a0080000.v_proc_ss":0 [ENABLED]
note

Here "dv.query:no-link" under "v_hdmi_rx_ss" node shows HDMI-Rx source is not connected or HDMI-Rx source is not active (Try waking up the device by pressing a key on remote)

Here "dv.query:no-link" under "v_hdmi_rx_ss" node shows HDMI-Rx source is not connected or HDMI-Rx source is not active (Try waking up the device by pressing a key on remote)

Notes for gst-launch-1.0 commands:

$ media-ctl -d /dev/media1 -V "\"a0080000.v_proc_ss\":0  [fmt:RBG888_1X24/3840x2160 field:none]"
$ media-ctl -d /dev/media1 -V "\"a0080000.v_proc_ss\":1  [fmt:VYYUYY8_1X24/3840x2160 field:none]"
note

Make sure NVIDIA SHIELD is configured for 4K resolution and RGB888 color format

Make sure NVIDIA SHIELD is configured for 4K resolution and RGB888 color format

$ media-ctl -d /dev/media1 -V "\"a0080000.v_proc_ss\":0  [fmt:VYYUYY8_1X24/3840x2160 field:none]"
$ media-ctl -d /dev/media1 -V "\"a0080000.v_proc_ss\":1  [fmt:VYYUYY8_1X24/3840x2160 field:none]"
note

Make sure ABOX is configured for 4K resolution and VYYUYY8 color format

Make sure ABOX is configured for 4K resolution and VYYUYY8 color format

Notes to set the format of SCD channel in media1 node:

$ media-ctl -p -d /dev/media1

Run the following command to change the resolution of SCD nodes(here media1 is combined with SCD media node and xlnx-scdchan.0 is SCD channel)

$ media-ctl -d /dev/media1 -V "\"xlnx-scdchan.0\":0 [fmt:VYYUYY8_1X24/3840x2160 field:none]"
$ media-ctl -d /dev/media1 -V "\"xlnx-scdchan.0\":1 [fmt:VYYUYY8_1X24/3840x2160 field:none]"
$ media-ctl -d /dev/media1 -V "\"xlnx-scdchan.0\":0 [fmt:VYYUYY8_1X24/1920x1080 field:none]"
$ media-ctl -d /dev/media1 -V "\"xlnx-scdchan.0\":1 [fmt:VYYUYY8_1X24/1920x1080 field:none]"

Below configurations needs to be set in input.cfg for HDMI-1080p60

Common Configuration    : START
Num Of Input            : 1
Output                  : HDMI
Out Type                : Display
Frame Rate              : 60
Exit

Input Configuration     : START
Input Num               : 1
Input Type              : hdmi
Raw                     : TRUE
Width                   : 1920
Height                  : 1080
Enable SCD              : TRUE
Exit
$ vcu_gst_app /media/card/config/input.cfg

If HDMI-Tx link-up issue is observed after Linux booting, use the following command for 60fps use-cases:

$ modetest -D a0070000.v_mix -s 44:3840x2160-60@AR24
$ modetest -D fd4a0000.zynqmp-display -s 43:3840x2160-30@BG24 -w 40:"g_alpha_en":0
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, framerate=60/1, format=NV12 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" show-preroll-frame=false alsasrc device=hw:2,1 provide-clock=false ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! queue ! alsasink device="hw:2,0"
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, framerate=60/1, format=NV12 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, profile=main, alignment=au ! queue ! omxh265dec internal-entropy-buffers=5 low-latency=0 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" show-preroll-frame=false alsasrc device=hw:2,1 provide-clock=false ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! audioconvert ! audioresample ! volume volume=2.0 ! audio/x-raw, rate=48000, channels=2, format=S24LE ! audioconvert ! audioresample ! queue max-size-bytes=0 ! alsasink device="hw:2,0"
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 num-buffers=3600 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, profile=main, alignment=au ! queue ! mux. alsasrc device=hw:2,1 provide-clock=false num-buffers=3600 ! audio/x-raw, format= S24_32LE, rate=48000, channels=2 ! queue ! audioconvert ! audioresample ! opusenc ! opusparse ! mpegtsmux name=mux ! filesink location = "/run/test.ts"
note

File location should be USB-3.0 to avoid the read-write bandwidth issue

File location should be USB-3.0 to avoid the read-write bandwidth issue

$ gst-launch-1.0 uridecodebin uri="file:///run/test.ts" name=decode ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" decode. ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channnels=2, format=S24_32LE ! queue ! alsasink device="hw:2,0"
note

File location should be USB-3.0 to avoid the read-write bandwidth issue

File location should be USB-3.0 to avoid the read-write bandwidth issue

$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265, profile=main, alignment=au ! queue ! mux. alsasrc device=hw:2,1 provide-clock=false ! audio/x-raw, format=S24_32LE, rate=48000, channels=2 ! queue ! audioconvert ! audioresample ! opusenc ! opusparse ! mpegtsmux name=mux ! rtpmp2tpay ! udpsink host=192.168.25.89 port=5004
note

Here 192.168.25.89 is host/client IP address and 5004 is port number

Here 192.168.25.89 is host/client IP address and 5004 is port number

$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, clock-rate=90000" ! rtpjitterbuffer latency=1000 ! rtpmp2tdepay ! tsparse ! video/mpegts ! tsdemux name=demux demux. ! queue ! h265parse ! video/x-h265, profile=main, alignment=au ! omxh265dec internal-entropy-buffers=5 low-latency=0 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" demux. ! queue ! opusparse ! opusdec ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! alsasink device="hw:2,0"

gst-launch-1.0 commands for MIPI video, I2S Audio: 

$ gst-launch-1.0 v4l2src device=/dev/video1 io-mode=4 ! video/x-raw, width=3840, height=2160, framerate=60/1, format=NV12 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" show-preroll-frame=false alsasrc device=hw:1,1 provide-clock=false ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! queue ! alsasink device="hw:1,0"
$ gst-launch-1.0 v4l2src device=/dev/video1 io-mode=4 ! video/x-raw, width=3840, height=2160, framerate=60/1, format=NV12 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, profile=main, alignment=au ! queue ! omxh265dec internal-entropy-buffers=5 low-latency=0 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" show-preroll-frame=false alsasrc device=hw:1,1 provide-clock=false ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! audioconvert ! audioresample ! volume volume=2.0 ! audio/x-raw, rate=48000, channels=2, format=S24LE ! audioconvert ! audioresample ! queue max-size-bytes=0 ! alsasink device="hw:1,0"
$ gst-launch-1.0 v4l2src device=/dev/video1 io-mode=4 num-buffers=3600 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, profile=main, alignment=au ! queue ! mux. alsasrc device=hw:1,1 provide-clock=false num-buffers=3600 ! audio/x-raw, format= S24_32LE, rate=48000, channels=2 ! queue ! audioconvert ! audioresample ! opusenc ! opusparse ! mpegtsmux name=mux ! filesink location = "/run/test.ts"
note

File location should be USB-3.0 to avoid the read-write bandwidth issue

File location should be USB-3.0 to avoid the read-write bandwidth issue

$ gst-launch-1.0 uridecodebin uri="file:///run/test.ts" name=decode ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" decode. ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channnels=2, format=S24_32LE ! queue ! alsasink device="hw:1,0"
note

File location should be USB-3.0 to avoid the read-write bandwidth issue

File location should be USB-3.0 to avoid the read-write bandwidth issue

$ gst-launch-1.0 v4l2src device=/dev/video1 io-mode=4 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265, profile=main, alignment=au ! queue ! mux. alsasrc device=hw:1,1 provide-clock=false ! audio/x-raw, format=S24_32LE, rate=48000, channels=2 ! queue ! audioconvert ! audioresample ! opusenc ! opusparse ! mpegtsmux name=mux ! rtpmp2tpay ! udpsink host=192.168.25.89 port=5004
note

Here 192.168.25.89 is host/client IP address and 5004 is port number.

Here 192.168.25.89 is host/client IP address and 5004 is port number.

$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, clock-rate=90000" ! rtpjitterbuffer latency=1000 ! rtpmp2tdepay ! tsparse ! video/mpegts ! tsdemux name=demux demux. ! queue ! h265parse ! video/x-h265, profile=main, alignment=au ! omxh265dec internal-entropy-buffers=5 low-latency=0 ! queue max-size-bytes=0 ! kmssink bus-id="a0070000.v_mix" demux. ! queue ! opusparse ! opusdec ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! alsasink device="hw:1,0"