This page provides detailed information related to Design Module 2 - SDI Video Capture and Display with PLDDR

Table of Contents

1 Overview

The primary goal of this Design is to demonstrate the capabilities of VCU hard block present in Zynq UltraScale+ EV devices. The TRD will serve as a platform to tune the performance parameters of VCU and arrive at optimal configurations for encoder and decoder blocks. It has also added an initial support of 8-channels audio.

This design supports the following video interfaces:

Sources:

Sinks:

VCU Codec:

Streaming Interfaces:

Video format:

Audio Configuration:

Supported Resolution

The table below provides the supported resolution from GUI and command-line app in this design.

Resolution

GUI

Command Line

Single Stream

Single Stream

Multi Stream

4Kp60/59.94

X

X

4Kp30/29.97

X

X

1080p60/59.94

X

X

√ - Supported
x – Not supported

The below table gives information about the features supported in this design. 

Pipeline

Input Source

Output Type

ALSA Srivers

Resolution

Audio Codec Type

Audio Configuration

Video Codec
Type

 Deliverables

Record/Stream-Out pipeline

SDI-Rx

File Sink/ Stream-Out

 

SDI-Rx ALSA drivers

 


4K/1080p

 Opus

2 channel @ 48 kHz

 

HEVC/AVC

SDI-Rx Audio encode with soft codec and video with VCU and store it in a container format.

 Vorbis

8* channel @ 48 kHz

SDI-Rx Audio encode with soft codec and video with VCU and store it in a container format.

Playback pipeline

File Source/ Stream-In

SDI-Tx

SDI-Tx ALSA drivers

4K/1080p

Opus

2 channel @ 48 kHz

HEVC/AVC

Playback of the local-file/stream-in with video decoded using VCU and Audio using GStreamer soft codec.

Vorbis

8* channel @ 48 kHz

Playback of the local-file/stream-in with video decoded using VCU and Audio using GStreamer soft codec.

Capture → Display

SDI-Rx

SDI-Tx

SDI-Rx ALSA drivers and SDI-Tx ALSA drivers

4K/1080p

NA

2 channel @ 48 kHz OR

8* channel @ 48 kHz

HEVC/AVC

SDI-Rx Audio /Video pass to SDI-Tx without VCU/Audio-Codec.

Capture → Encode → Decode → Display

 SDI-Rx

 SDI-Tx

 SDI-Rx ALSA drivers and SDI-Tx ALSA drivers

 4K/1080p

 NA

2 channel @ 48 kHz

OR
8* channel @ 48 kHz

 HEVC/AVC

SDI-Rx raw audio and video with VCU encoder and decode to achieve AV sync.

note

(*) The 8-channels audio functionality is validated with Phabrix Qx 12G SDI Analyzer/Generator.

(*) The 8-channels audio functionality is validated with Phabrix Qx 12G SDI Analyzer/Generator.

The below figure shows the SDI Video Capture and SDI Display with Audio design hardware block diagram.

The below figure shows the SDI Video Capture and SDI Display with Audio design software block diagram.

1.1 Board Setup

Refer below link for board setup

1.2 Run Flow

The TRD package is released with the source code, Vivado project, Petalinux BSP, and SD card image that enables the user to run the demonstration. It also includes the binaries necessary to configure and boot the ZCU106 board. Prior to running the steps mentioned in this wiki page, download the TRD package and extract its contents to a directory referred to as TRD_HOME which is the home directory.

Refer below link to download all TRD contents.

TRD package contents specific to SDI Video Capture and SDI Display with Audio design are placed in the following directory structure. The user needs to copy all the files from the $TRD_HOME/images/vcu_sdi_xv20 to FAT32 formatted SD card directory.

rdf0428-zcu106-vcu-trd-2020-2
├── apu
│   └── vcu_petalinux_bsp
├── images
│   ├── vcu_10g
│   ├── vcu_audio
│   ├── vcu_hdr10_hdmi
│   ├── vcu_llp2_hdmi_nv12
│   ├── vcu_llp2_hdmi_nv16
│   ├── vcu_llp2_hdmi_xv20
│   ├── vcu_llp2_sdi_xv20
│   ├── vcu_multistream_nv12
│   ├── vcu_pcie
│   ├── vcu_quad_sensor
│   └── vcu_sdi_xv20
├── pcie_host_package
│   ├── COPYING
│   ├── include
│   ├── LICENSE
│   ├── readme.txt
│   ├── RELEASE
│   ├── tests
│   ├── tools
│   └── xdma
├── pl
│   ├── constrs
│   ├── designs
│   ├── prebuild
│   ├── README.md
│   └── srcs
└── README.txt

TRD package contents specific to SDI Video Capture and SDI Display PLDDR design are placed in the following directory structure.

rdf0428-zcu106-vcu-trd-2020-2
├── apu
│   └── vcu_petalinux_bsp
│       └── xilinx-vcu-zcu106-v2020.2-final.bsp
├─images
│   └── vcu_sdi_xv20
│       ├── autostart.sh
│       ├── BOOT.BIN
│       ├── boot.scr
│       ├── config
│       ├── image.ub
│       ├── system.dtb
│       └── vcu
├── pcie_host_package
├── pl
│   ├── constrs
│   ├── designs
│   │   ├── zcu106_picxo_plddr_sdi
│   ├── prebuild
│   │   ├── zcu106_picxo_plddr_sdi
│   ├── README.md
│   └── srcs
│       ├── hdl
│       └── ip
└── README.txt

Configuration files (input.cfg) for various Resolutions are placed in the following directory structure in /media/card.

config
├── 1080p60
│   ├── Display
│   ├── Record
│   ├── Stream-in
│   └── Stream-out
├── 4kp30
│   ├── Display
│   ├── Record
│   ├── Stream-in
│   └── Stream-out
└── 4kp60
│   ├── Display
│   ├── Record
│   ├── Stream-in
│   └── Stream-out
└── input.cfg

1.2.1 GStreamer Application (vcu_gst_app)

The vcu_gst_app is a command-line multi-threaded Linux application. The command-line application requires an input configuration file (input.cfg) to be provided in the plain text.

Execution of the application is shown below:

$ vcu_gst_app <path to *.cfg file>

Example:

4kp60 HEVC_HIGH Display Pipeline execution

$ vcu_gst_app /media/card/config/4kp60/Display/Single_4kp60_HEVC_HIGH.cfg

4kp60 HEVC_HIGH Record Pipeline execution

$ vcu_gst_app /media/card/config/4kp60/Record/Single_4kp60_HEVC_HIGH.cfg

4kp60 HEVC_HIGH Stream-out Pipeline execution

$ vcu_gst_app /media/card/config/4kp60/Stream-out/Single_4kp60_HEVC_HIGH.cfg

4kp60 HEVC_HIGH Stream-in Pipeline execution

$ vcu_gst_app /media/card/config/4kp60/Stream-in/input.cfg
note

Make sure SDI-Rx should be configured to 4kp60 mode.

Make sure SDI-Rx should be configured to 4kp60 mode.

To measure the latency of the pipeline, run the below command. The latency data is huge, so dump it to a file.

$ GST_DEBUG="GST_TRACER:7" GST_TRACERS="latency" GST_DEBUG_FILE=/run/latency.log vcu_gst_app /media/card/config/4kp60/Display/Single_4kp60_HEVC_HIGH.cfg

Refer below link for detailed run flow steps

1.3 Build Flow

Refer below link for build flow


2 Other Information

2.1 Known Issues

2.2 Limitations

2.3 Optimum VCU Encoder parameters for use-cases:

Video streaming:

Performance: AVC Encoder settings:

Quality: Low bitrate AVC encoding:

2.4 Audio-Video Synchronization

Clocks and synchronization in GStreamer

When playing complex media, each sound and video sample must be played in a specific order at a specific time. For this purpose, GStreamer provides a synchronization mechanism.

GStreamer provides support for the following use cases:

GStreamer uses a GstClock object, buffer timestamps and a SEGMENT event to synchronize streams in a pipeline as we will see in the next sections.

Clock running-time

In a typical computer, there are many sources that can be used as a time source, e.g., the system time, soundcards, CPU performance counters, etc. For this reason, GStreamer has many GstClock implementations available. Note that clock time doesn't have to start from 0 or any other known value. Some clocks start counting from particular start date, others from the last reboot, etc.

A GstClock returns the absolute-time according to that clock with gst_clock_get_time (). The absolute-time (or clock time) of a clock is monotonically increasing.

running-time is the difference between a previous snapshot of the absolute-time called the base-time and any other absolute-time.

running-time = absolute-time - base-time

A GStreamer GstPipeline object maintains a GstClock object and a base-time when it goes to the PLAYING state. The pipeline gives a handle to the selected GstClock to each element in the pipeline along with selected base-time. The pipeline will select a base-time in such a way that the running-time reflects the total time spent in the PLAYING state. As a result, when the pipeline is PAUSED, the running-time stands still.

Because all objects in the pipeline have the same clock and base-time, they can thus all calculate the running-time according to the pipeline clock.

Buffer running-time

To calculate a buffer running-time, we need a buffer timestamp and the SEGMENT event that preceded the buffer. First we can convert the SEGMENT event into a GstSegment object and then we can use the gst_segment_to_running_time () function to perform the calculation of the buffer running-time.

Synchronization is now a matter of making sure that a buffer with a certain running-time is played when the clock reaches the same running-time. Usually, this task is performed by sink elements. These elements also have to take into account the configured pipeline's latency and add it to the buffer running-time before synchronizing to the pipeline clock.

Non-live sources timestamp buffers with a running-time starting from 0. After a flushing seek, they will produce buffers again from a running-time of 0.

Live sources need to timestamp buffers with a running-time matching the pipeline running-time when the first byte of the buffer was captured.

Buffer stream-time

The buffer stream-time, also known as the position in the stream, is a value between 0 and the total duration of the media and it's calculated from the buffer timestamps and the preceding SEGMENT event.

The stream-time is used in:

The stream-time is never used to synchronize streams, this is only done with the running-time.

Time overview

Here is an overview of the various timelines used in GStreamer.

The image below represents the different times in the pipeline when playing a 100ms sample and repeating the part between 50ms and 100ms.

You can see how the running-time of a buffer always increments monotonically along with the clock-time. Buffers are played when their running-time is equal to the clock-time - base-time. The stream-time represents the position in the stream and jumps backwards when repeating.

Clock providers

A clock provider is an element in the pipeline that can provide a GstClock object. The clock object needs to report an absolute-time that is monotonically increasing when the element is in the PLAYING state. It is allowed to pause the clock while the element is PAUSED.

Clock providers exist because they play back media at some rate, and this rate is not necessarily the same as the system clock rate. For example, a sound card may play back at 44.1 kHz, but that doesn't mean that after exactly 1 second according to the system clock, the sound card has played back 44100 samples. This is only true by approximation. In fact, the audio device has an internal clock based on the number of samples played that we can expose.

If an element with an internal clock needs to synchronize, it needs to estimate when a time according to the pipeline clock will take place according to the internal clock. To estimate this, it needs to slave its clock to the pipeline clock.

If the pipeline clock is exactly the internal clock of an element, the element can skip the slaving step and directly use the pipeline clock to schedule playback. This can be both faster and more accurate. Therefore, generally, elements with an internal clock like audio input or output devices will be a clock provider for the pipeline.

When the pipeline goes to the PLAYING state, it will go over all elements in the pipeline from sink to source and ask each element if they can provide a clock. The last element that can provide a clock will be used as the clock provider in the pipeline. This algorithm prefers a clock from an audio sink in a typical playback pipeline and a clock from source elements in a typical capture pipeline.

There exist some bus messages to let you know about the clock and clock providers in the pipeline. You can see what clock is selected in the pipeline by looking at the NEW_CLOCK message on the bus. When a clock provider is removed from the pipeline, a CLOCK_LOST message is posted and the application should go to PAUSED and back to PLAYING to select a new clock.

For more detail please refer: https://gstreamer.freedesktop.org/documentation/application-development/advanced/clocks.html?gi-language=c


3 Appendix A - Input Configuration File (input.cfg)

The example configuration files are stored at /media/card/config/ folder.

Configuration Type

Configuration Name

Description

Available Options

Common

Common Configuration

It is the starting point of common configuration

Num of Input

Number of input

1

Output

Select the video interface.

SDI or DP

Out Type

Type of output

display, record, stream

Display Rate

Pipeline frame rate

30, 60

Exit

It indicates to the application that the configuration is over

Input

Input Configuration

It is the starting point of the input configuration

Input Num

Starting Nth input configuration

1

Input Type

Input source type

SDI, File, Stream

Uri

File path or Network URL. Applicable for file playback and Stream-in pipeline only. Supported file formats for playback are ts, mp4, and mkv.

file:///media/usb/abc.ts (for file path), udp://192.168.25.89:5004/ (for Network streaming, Here 192.168.25.89 is IP address and 5004 is port number)

Raw

To tell the pipeline is processed or pass-through

TRUE, FALSE

Width

The width of the live source

3840,1920

Height

The height of the live source

2160, 1080

Format

The format of input data

XV20

Exit

It indicates to the application that the configuration is over

Encoder

Encoder Configuration

It is the starting point of encoder configuration

Encoder Num

Starting Nth encoder configuration

1

Encoder Name

Name of the encoder

AVC, HEVC

Profile

Name of the profile

baseline, main or high for AVC. Main for HEVC.

Rate Control

Rate control options

CBR, VBR, and low-latency.

Filler Data

Filler Data NAL units for CBR rate control

True, False

QP

QP control mode used by the VCU encoder

Uniform, Auto

L2 Cache

Enable or Disable L2Cache buffer in encoding process.

True, False

Latency Mode

Encoder latency mode.

normal, sub_frame

Low Bandwidth

If enabled, decrease the vertical search range used for P-frame motion estimation to reduce the bandwidth.

True, False

Gop Mode

Group of Pictures mode.

Basic, low_delay_p, low_delay_b

Bitrate

Target bitrate in Kbps

1-60000

B Frames

Number of B-frames between two consecutive P-frames

0-4

Slice

The number of slices produced for each frame. Each slice contains one or more complete macroblock/CTU row(s). Slices are distributed over the frame as regularly as possible. If slice-size is defined as well more slices may be produced to fit the slice-size requirement

4 to 22 : 4Kp resolution with HEVC codec
4 to 32 : 4Kp resolution with AVC codec
4 to 32 : 1080p resolution with HEVC codec
4 to 32 : 1080p resolution with AVC codec

GoP Length

The distance between two consecutive I frames

1-1000

GDR Mode

It specifies which Gradual Decoder Refresh(GDR) scheme should be used when gop-mode = low_delay_p

note

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only

GDR mode is currently supported with LLP1/LLP2 low-delay-p use-cases only

Horizontal/Vertical/Disabled

Entropy Mode

It specifies the entropy mode for H.264 (AVC) encoding process

CAVLC/CABAC/Default

Max Picture Size

It is used to curtail instantaneous peak in the bit-stream using this parameter. It works in CBR/VBR rate-control only. When it is enabled, max-picture-size value is calculated and set with 10% of AllowedPeakMargin. i.e. max-picture-size =  (TargetBitrate / FrameRate) * 1.1

TRUE/FALSE

Preset

Encoder configuration Preset

HEVC_HIGH, HEVC_MEDIUM, HEVC_LOW, AVC_HIGH, AVC_MEDIUM, AVC_LOW, Custom

Exit

It indicates to the application that the configuration is over

Record

Record Configuration

It is the starting point of record configuration.

Record Num

Starting Nth record configuration.

1

Out File Name

Record file path.

e.g. /media/usb/abc.ts

Duration

Duration in minutes.

1-3

Exit

It indicates to the application that the configuration is over.

Streaming

Streaming Configuration

It is the starting point of streaming configuration.

Streaming Num

Starting Nth Streaming configuration

1

Host IP

The host to send the packets to

192.168.25.89 or Windows PC IP

Port:

The port to send the packets to.

5004, 5008, 5012, 5016

Exit

It indicates to the application that the configuration is over.

Audio Configuration

Audio Configuration

It is the starting point of the audio configuration.

Audio Enable

Enable or Disable audio in pipeline.

True, False

Audio Format

The format of the audio

S24_32LE

Sampling Rate

To set the audio sampling rate.

48000

Num Of Channel

The number of audio channels.

note

The vcu-gst-app has only support of 2 channels audio as of now, However the design has 8-channels audio support. You can refer Appendix-B for 8-channels audio GStreamer pipelines.

The vcu-gst-app has only support of 2 channels audio as of now, However the design has 8-channels audio support. You can refer Appendix-B for 8-channels audio GStreamer pipelines.

2

Source

It should be SDI, as currently only SDI audio capture is supported.

Renderer

It should be SDI, as currently only SDI audio renderer is supported.

Volume

To set the volume level. The default value is 2.0.

0.0 - 10.0

Exit

It indicates to the application that the configuration is over.

Trace

Trace Configuration

It is the starting point of trace configuration.

FPS Info

To display fps info on the console.

True, False

APM Info

To display APM counter number on the console.

True, False

Pipeline Info

To display pipeline info on console.

True, False

Exit

It indicates to the application that the configuration is over.


4 Appendix B - SDI-Rx/Tx Link-up and GStreamer Commands

This section covers configuration of SDI-Rx using media-ctl utility and SDI-Tx using modetest utility, along with demonstrating SDI-Rx/Tx link-up issue and steps to switch resolution. It also contains sample GStreamer SDI XV20 pipelines for Display, Record, Stream-In and Stream-Out use-cases.

Run the below command to check the SDI link status, resolution, video node and output format of the SDI input source. Run the below command for all media nodes to print media device topology where mediaX represents different media nodes. In the topology, log look for the v_smpte_uhdsdi_rx_ss string to identify the SDI input source media node. The media-ctl command generated as part of petalinux bsp will support all the vcu supported formats like NV12, NV16, XV15 and XV20.

$ media-ctl -p -d /dev/mediaX
note

Check resolution and frame-rate of of dv.detect under v_smpte_uhdsdi_rx_ss node.

Check resolution and frame-rate of of dv.detect under v_smpte_uhdsdi_rx_ss node.

root@zcu106_vcu_picxo_plddr_sdi_8ch:/media/card# media-ctl -p -d /dev/media0   -----> media node for SDI input source
Media controller API version 5.4.0

Media device information
------------------------
driver          xilinx-video
model           Xilinx Video Composite Device
serial          
bus info        
hw revision     0x0
driver version  5.4.0

Device topology
- entity 1: vcap_sdirxsdi_rx_input_v_smpte_ (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video0   -----> Video node for SDI input source
        pad0: Sink
                <- "a0030000.v_smpte_uhdsdi_rx_ss":0 [ENABLED]

- entity 5: a0030000.v_smpte_uhdsdi_rx_ss (1 pad, 1 link)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev0
        pad0: Source
                [fmt:UYVY10_1X20/3840x2160@1000/60000 field:none colorspace:rec709 xfer:709 ycbcr:bt2020 quantization:lim-range]
                [dv.detect:BT.656/1120 3840x2160p60 (4400x2250) stds:CEA-861 flags:can-reduce-fps,CE-video,has-cea861-vic]  ---> SDI-Rx link up
                -> "vcap_sdirxsdi_rx_input_v_smpte_":0 [ENABLED]
root@zcu106_vcu_picxo_plddr_sdi_8ch:/media/card# media-ctl -p -d /dev/media0     -----> media node for SDI input source
Media controller API version 5.4.0

Media device information
------------------------
driver          xilinx-video
model           Xilinx Video Composite Device
serial          
bus info        
hw revision     0x0
driver version  5.4.0

Device topology
- entity 1: vcap_sdirxsdi_rx_input_v_smpte_ (1 pad, 1 link)
            type Node subtype V4L flags 0
            device node name /dev/video0     -----> Video node for SDI input source
        pad0: Sink
                <- "a0030000.v_smpte_uhdsdi_rx_ss":0 [ENABLED]

- entity 5: a0030000.v_smpte_uhdsdi_rx_ss (1 pad, 1 link)
            type V4L2 subdev subtype Unknown flags 0
            device node name /dev/v4l-subdev0
        pad0: Source
                [dv.query:no-lock]         -----> link is not detected
                -> "vcap_sdirxsdi_rx_input_v_smpte_":0 [ENABLED]
note

Here dv.query:no-lock under v_smpte_uhdsdi_rx_ss node shows SDI-Rx source is not connected or SDI-Rx source is not active (Try waking up the device by pressing a key on remote).

Here dv.query:no-lock under v_smpte_uhdsdi_rx_ss node shows SDI-Rx source is not connected or SDI-Rx source is not active (Try waking up the device by pressing a key on remote).

Modetest commands:

$ modetest -M xlnx -s 35:3840x2160-60@XV20  -w 35:sdi_mode:5 -w 35:sdi_data_stream:8 -w 35:is_frac:0 
$ modetest -M xlnx -s 35:3840x2160-30@XV20  -w 35:sdi_mode:4 -w 35:sdi_data_stream:8 -w 35:is_frac:0
$ modetest -M xlnx -s 35:1920x1080-60@XV20  -w 35:sdi_mode:2 -w 35:sdi_data_stream:2 -w 35:is_frac:0
$ modetest -M xlnx -s 35:3840x2160-59.94@XV20  -w 35:sdi_mode:5 -w 35:sdi_data_stream:8 -w 35:is_frac:1
$ modetest -M xlnx -s 35:3840x2160-29.97@XV20  -w 35:sdi_mode:4 -w 35:sdi_data_stream:8 -w 35:is_frac:1
$ modetest -M xlnx -s 35:1920x1080-59.94@XV20  -w 35:sdi_mode:2 -w 35:sdi_data_stream:2 -w 35:is_frac:1
$ vcu_gst_app /media/card/config/input.cfg

Below configurations needs to be set in input.cfg for SDI-1080p60.

Common Configuration    : START
Num Of Input            : 1
Output                  : SDI
Out Type                : Display
Frame Rate              : 60
Exit

Input Configuration     : START
Input Num               : 1
Input Type              : SDI
Raw                     : TRUE
Width                   : 1920
Height                  : 1080
Format			: XV20
Exit
note

After booting you need to run the modetest command(mandatory) for respective resolution you want to validate.

After booting you need to run the modetest command(mandatory) for respective resolution you want to validate.

Pixel Format

GStreamer Format

Media Bus Format

GStreamer HEVC Profile

GStreamer AVC Profile

Kmssink Plane-id

XV20

NV16_10LE32

UYVY10_1X20

main-422-10

high-4:2:2

32

note
  • All 8-channels GStreamer pipelines are only validated with Phabrix Qx 12G SDI Analyzer/Generator. It is a possibility that, 8-channels audio behavior might be different with actual setup containing 7.1 A/V receiver system.

  • In record use-case, file location should be USB-3.0/SATA/RAMdisk to avoid the read-write bandwidth issue.

  • Video0 in the each below gst-launch pipelines indicates a video node for the input source.

  • All 8-channels GStreamer pipelines are only validated with Phabrix Qx 12G SDI Analyzer/Generator. It is a possibility that, 8-channels audio behavior might be different with actual setup containing 7.1 A/V receiver system.

  • In record use-case, file location should be USB-3.0/SATA/RAMdisk to avoid the read-write bandwidth issue.

  • Video0 in the each below gst-launch pipelines indicates a video node for the input source.

$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV16_10LE32, width=3840, height=2160, framerate=60/1 ! queue max-size-bytes=-1 ! fpsdisplaysink text-overlay=false video-sink="kmssink driver-name=xlnx async=false hold-extra-sample=true show-preroll-frame=false" text-overlay=false sync=false alsasrc device=hw:1,1 provide-clock=false ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! queue max-size-bytes=0 ! alsasink device="hw:1,0"
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw ,format=NV16_10LE32, width=3840, height=2160, framerate=60/1 ! queue max-size-bytes=-1 ! fpsdisplaysink text-overlay=false video-sink="kmssink driver-name=xlnx async=false hold-extra-sample=true show-preroll-frame=false" text-overlay=false sync=false -v alsasrc device=hw:1,1 provide-clock=false ! audio/x-raw, rate=48000, channels=8, format=S24_32LE ! queue max-size-bytes=0 ! alsasink device="hw:1,0"
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, profile=main-422-10, alignment=au ! queue max-size-bytes=0 ! omxh265dec internal-entropy-buffers=5 low-latency=0 ! queue max-size-bytes=0 ! fpsdisplaysink text-overlay=false video-sink="kmssink driver-name=xlnx async=false hold-extra-sample=true show-preroll-frame=false" alsasrc device=hw:1,1 provide-clock=false ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! queue max-size-bytes=0 ! alsasink device="hw:1,0"
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, profile=main-422-10, alignment=au ! queue max-size-bytes=0 ! omxh265dec internal-entropy-buffers=5 low-latency=0 ! queue max-size-bytes=0 ! fpsdisplaysink text-overlay=false video-sink="kmssink driver-name=xlnx async=false hold-extra-sample=true show-preroll-frame=false" alsasrc device=hw:1,1 provide-clock=false ! audio/x-raw, rate=48000, channels=8, format=S24_32LE ! queue max-size-bytes=0 ! alsasink device="hw:1,0"
$ gst-launch-1.0 v4l2src io-mode=4 ! video/x-raw, format=NV16_10LE32, width=3840, height=2160, framerate=60000/1001 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! queue max-size-bytes=-1 ! h265parse ! omxh265dec ! queue max-size-bytes=-1 ! fpsdisplaysink text-overlay=false video-sink="kmssink bus-id=amba_pl@0:drm-pl-disp-drvsdi_tx_output_v_smpte_uhdsdi_tx_ss connector-properties="props,sdi_mode=5,sdi_data_stream=8,is_frac=1" show-preroll-frame=false" sync=true 
$ gst-launch-1.0 v4l2src io-mode=4 ! video/x-raw, format=NV16_10LE32, width=3840, height=2160, framerate=30000/1001 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! queue max-size-bytes=-1 ! h265parse ! omxh265dec ! queue max-size-bytes=-1 ! fpsdisplaysink text-overlay=false video-sink="kmssink bus-id=amba_pl@0:drm-pl-disp-drvsdi_tx_output_v_smpte_uhdsdi_tx_ss connector-properties="props,sdi_mode=4,sdi_data_stream=8,is_frac=1" show-preroll-frame=false" sync=true
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 num-buffers=3600 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, profile=main-422-10, alignment=au ! queue max-size-bytes=0 ! mux. alsasrc device=hw:1,1 provide-clock=false num-buffers=3600 ! audio/x-raw, rate=48000, channels=2, format=S24_32LE  ! queue max-size-bytes=0 ! audioconvert ! audioresample ! opusenc ! mpegtsmux name=mux ! filesink location="/run/test.ts"
$ gst-launch-1.0 uridecodebin uri="file:///run/test.ts" name=decode ! queue max-size-bytes=0 ! fpsdisplaysink text-overlay=false video-sink="kmssink driver-name=xlnx async=false hold-extra-sample=true show-preroll-frame=false" decode. ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! queue ! alsasink device="hw:1,0"
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 num-buffers=3600 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! video/x-h265, profile=main-422-10, alignment=au ! h265parse ! queue max-size-bytes=0 ! mux. alsasrc device=hw:1,1 provide-clock=false num-buffers=3600 ! audio/x-raw, rate=48000, channels=8, format=S24_32LE  ! queue max-size-bytes=0 ! audioconvert ! audioresample ! vorbisenc ! matroskamux name=mux ! filesink location="/run/test.mkv"
$ gst-launch-1.0 uridecodebin uri="file:///run/test.mkv" name=decode ! queue max-size-bytes=0 ! fpsdisplaysink text-overlay=false video-sink="kmssink driver-name=xlnx async=false hold-extra-sample=true show-preroll-frame=false" decode. ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=8, format=S24_32LE ! queue ! alsasink device="hw:1,0"
$ gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, width=3840, height=2160, format=NV16_10LE32, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265, profile=main-422-10, alignment=au ! h265parse ! queue ! mux. alsasrc device=hw:1,1 provide-clock=false ! audio/x-raw, format=S24_32LE, rate=48000, channels=2 ! queue max-size-bytes=0 ! audioconvert ! audioresample ! opusenc ! mpegtsmux name=mux ! rtpmp2tpay ! udpsink host=192.168.25.89 port=5004 buffer-size=60000000 max-bitrate=120000000 max-lateness=-1 qos-dscp=60 async=false
$ gst-launch-1.0 udpsrc port=5004 buffer-size=60000000 caps="application/x-rtp, clock-rate=90000" ! rtpjitterbuffer latency=1000 ! rtpmp2tdepay ! tsparse ! video/mpegts ! tsdemux name=demux demux. ! queue ! h265parse ! video/x-h265, profile=main-422-10, alignment=au ! omxh265dec internal-entropy-buffers=5 ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false video-sink="kmssink driver-name=xlnx async=false hold-extra-sample=true show-preroll-frame=false" demux. ! queue max-size-bytes=0 max-size-time=0 max-size-buffers=0 ! opusparse ! opusdec ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=2, format=S24_32LE ! queue ! alsasink device="hw:1,0" 
$ gst-launch-1.0 rtpbin name=rtpbin v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV16_10LE32, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=120 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=120 ! video/x-h265, alignment=au ! queue ! rtph265pay ! rtpbin.send_rtp_sink_0 rtpbin.send_rtp_src_0 ! udpsink port=5004 buffer-size=60000000 host=192.168.25.89 qos-dscp=60 max-bitrate=120000000 async=false max-lateness=-1 alsasrc device=hw:1,1 provide-clock=false ! audio/x-raw, rate=48000, channels=8, format=S24_32LE  ! queue max-size-bytes=0 ! audioconvert ! audioresample ! vorbisenc ! rtpvorbispay config-interval=1 ! rtpbin.send_rtp_sink_1 rtpbin.send_rtp_src_1 ! udpsink port=5005 host=192.168.25.89 sync=false async=false
$ gst-launch-1.0 -v rtpbin name=rtpbin udpsrc name=udpsrc_video buffer-size=60000000 caps="application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H265" port=5004 ! rtpbin.recv_rtp_sink_0 rtpbin. ! rtph265depay ! h265parse ! video/x-h265, alignment=au ! omxh265dec ! video/x-raw ! queue max-size-bytes=0 ! fpsdisplaysink name=fpssink text-overlay=false 'video-sink=kmssink driver-name=xlnx async=false hold-extra-sample=true show-preroll-frame=false'-v udpsrc name=udpsrc_audio port=5005 caps="application/x-rtp, media=(string)audio, clock-rate=(int)48000, encoding-name=(string)VORBIS" ! rtpbin.recv_rtp_sink_1 rtpbin. ! rtpvorbisdepay ! vorbisdec ! audioconvert ! audioresample ! audio/x-raw, rate=48000, channels=8, format=S24_32LE ! queue ! alsasink device="hw:1,0"
$ gst-launch-1.0 v4l2src io-mode=4 ! video/x-raw\(format:Interlaced\),interlace-mode=alternate,format=NV16_10LE32,width=1920,height=1080,framerate=30/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=10000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! omxh265dec ! queue max-size-bytes=-1 ! kmssink bus-id=amba_pl@0:drm-pl-disp-drvsdi_tx_output_v_smpte_uhdsdi_tx_ss connector-properties="props,sdi_mode=0,sdi_data_stream=2,is_frac=0" show-preroll-frame=false
$ gst-launch-1.0 v4l2src io-mode=4 ! video/x-raw\(format:Interlaced\),interlace-mode=alternate,format=NV16_10LE32,width=720,height=576,framerate=25/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=4000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! omxh265dec ! queue max-size-bytes=-1 ! kmssink bus-id=amba_pl@0:drm-pl-disp-drvsdi_tx_output_v_smpte_uhdsdi_tx_ss connector-properties="props,sdi_mode=1,sdi_data_stream=2,is_frac=0" show-preroll-frame=false
$ gst-launch-1.0 v4l2src io-mode=4 ! video/x-raw\(format:Interlaced\),interlace-mode=alternate,format=NV16_10LE32,width=720,height=486,framerate=30000/1001 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=10000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 ! omxh265dec ! queue max-size-bytes=-1 ! kmssink bus-id=amba_pl@0:drm-pl-disp-drvsdi_tx_output_v_smpte_uhdsdi_tx_ss connector-properties="props,sdi_mode=1,sdi_data_stream=2,is_frac=1" show-preroll-frame=false